ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

The ZPL Compiler:
Portable Parallel Programming

Brad Chamberlain
The ZPL Project

i

CSE 401
May 28, 1999

\ %

4 I

‘What is Parallel Programming?

Parallel Programming: Computing using
several processors cooperatively (“in parallel”)

The promise: “If I run my program on 1,000
processors, it will run 1,000 times faster!”

(perfect speedup)

The reality: This is very difficult to achieve

prepared by Brad Chamberlain 1

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

4 ‘Why is Perfect Speedup)
‘Difficult to Achieve?

Imagine trying to get 1,000 people to solve a
problem cooperatively:

— for trivial problems (stutfing a million envelopes),
it probably would go 1,000x faster
— BUT, for more interesting problems, people would
require meetings or communications...
...to compare notes
...to exchange data
...to pass a task off from one person to another
— this is overhead (wasn’t required by a lone worker)

— the same issues apply to parallel programming

- /

4)

'Example of Parallel Overhead
e Matrix Addition
1:2:3:4 1:i1i1:1 2:3i4:5
1727374 2222 _[3456
17234 Y3333 [456 7
1:2:3:4 41414\|4 5i6i7:i8
e Matrix Multiplication
17234 17111 30130130130
1727374 2122 2| _ 30303030
123 4| * [37373 3] = [30:303030
1757374 ATaTala 30130130130

prepared by Brad Chamberlain 2

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

communication
required

- /

(o N
'Writing Parallel Programs

Q: How can I write a parallel program?

A: Lots of ways:

— use a traditional language (C/Fortran) plus a
library that supports communication between
processors (PVM/MPI) — tedious, painstaking

— use a traditional language and a parallelizing
compiler that will “automatically” make your
program run in parallel — hard problem, cross fingers

— use a new language designed to make parallel
programming easier (HPF, NESL, ZPL)

- /

prepared by Brad Chamberlain

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

(o)
‘What is ZPL?

* An array programming language
— atomic operations are supported on arrays
* A data-parallel programming language
— array operations are executed in parallel
* Targets large-scale scientific applications
* Developed at UW, 1991 — present

(o I
ZPL’s Goals

Expressiveness: Allow programmers to express
parallel computations elegantly

Portability: The program should run on all
modern parallel platforms

Performance: The program should run quickly
(ideally, as fast as a hand-coded parallel
program)

prepared by Brad Chamberlain 4

ZPL Array Operator Wrap-up

CSE 590ZPL (2/3/99)

-

Outline

O
¢ Introduction to ZPL

* The ZPL Compiler
— Achieving Portability
— Achieving Performance

-

'Region Overview

Regions: index sets that...
...can be named
region R=[1..n ,1..n];
BigR = [0..n+1,0..n+1];

...are used to declare arrays

var A, B, C [BigR integer;

...specify indices for a statement’s array references

-

prepared by Brad Chamberlain

ZPL Array Operator Wrap-up

CSE 590ZPL (2/3/99)

-

'Array Operators

Array Operators: applied to array expressions
to modify the statement’s region indices

— e.g., the @-operator translates indices by an offset

[R A := B@ast + C@west;

L]

(A@ast + A@west)/ 2;

= ()2

L]

o
4
Compare:
C:
o

'Regions vs. Indexing

for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
Alijl =Bli,j] + di,jl;
Ali,j] =B[i,j+1] + di,j-1];
Ti,j] = (AT, j+1] + AT, j-1])/2;
}
}
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
Alijl =T,
}
}

prepared by Brad Chamberlain

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

an)
'Challenges to ZPL’s Portability

* Unlike sequential machines, parallel
architectures aren’t well-understood

* As aresult, they change rapidly

— since entering grad school, I've seen about a dozen
different parallel architectures

— about half of these are no longer in use
— each architecture has its own unique
characteristics, quirks
* Thus, writing a compiler to work on all of
them could present quite a challenge

- /

an)
'Achieving Portability

ZPL achieves platform-independence in two
ways:
— posits an abstract parallel architecture
— uses ANSI C as its back-end “assembly language”

prepared by Brad Chamberlain 7

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

-~ ™
' ZPL’s Machine Model

e /PL relies on a machine model called the CTA

* The CTA provides an abstract view of parallel
computers:

— referring to data on another processor takes longer
than referring to your own local data

— the way that processors are interconnected is not
terribly important
* When compiling ZPL, we focus on the CTA
rather than each machine’s particular
characteristics

- /

ans R
' Compiling to ANSI C

The ZPL compiler doesn’t translate ZPL into
assembly code, but rather into ANSI C
— don’t need to learn each machine’s instruction set

— don’t have to write a new back-end for every new
machine that emerges

— knowing how C translates to assembly allows us
to generate efficient code

— don’t have to worry about traditional scalar
optimizations, register allocation, etc.

prepared by Brad Chamberlain 8

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

(o)
'ZPL Compiler Schematic

Black-box view:

ZPL

e zc

Reality:
ZPL AT?
code
zpl include files
and runtime libraries

4)

'Runtime Library Overview

* Runtime libraries implement all machine-
specific behavior:

interprocessor communication

memory allocation

allocating processors
coordinated I/O

* Porting the compiler to a new machine is as
simple as porting the libraries

— often no work at all, thanks to communication
libraries like PVM and MPI

prepared by Brad Chamberlain 9

ZPL Array Operator Wrap-up

CSE 590ZPL (2/3/99)

-

‘Compiler Output

Compiler produces a Single Program, Multiple

Data (SPMD) C program

— run one copy of the program on each processor
— each processor given unique index

— based on its index, each processor performs a
fraction of the total work:
for (i=MYLQ(R,0); i<=_MYH (R 0); i++) {
for (j=MLQR 1); j<=_MH (R 1); j++) {
_ACCESS(A,i,j) = _ACCESS(B,i,j) +
_ACCESS(C,i,j);

Compiler Overview

ZPL code
!

Parse into AST
Typecheck
Legalize

L
Optimize
Communication Insertion
Code Generation

ANSI lC code

prepared by Brad Chamberlain

10

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

4)

'Communication Insertion

@ is used to refer to neighboring elements

— data must be transferred to neighboring
processors
[Rl A := A@ast;

. 4
- f

global view local view
- J
(o)
' Optimizing Communication I
Eliminate redundant communication:
naive optimized
[R] begin
S/RB S/RB
A = 2*B@ast;
S/RB, C S/RC
D : = B@ast + CQ@west;
S/RB -
B : = B@ast;
end,;
- J

prepared by Brad Chamberlain 11

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

an)
' Optimizing Communication II
Overlap Communication and Computation
naive optimized
[R] begin
S/RB S/RB;SC
A .= 2*B@ast,;
S/RC RC
D : = B@ast + C@west;
B : = B@ast;
end;
o /
4)

Achieving Good Performance

* High-level optimizations
— communication optimizations
— array elimination (contraction)

* Low-level optimizations
— efficient array access
— dealing with C’s quirks

prepared by Brad Chamberlain 12

ZPL Array Operator Wrap-up CSE 590ZPL (2/3/99)

o)
Implementing ZPL Arrays

* C doesn’t support 2D dynamic arrays

* We need them because the number of
processors is unknown at compile time

* Thus, we implement them by hand:
A = malloc((_MYH (R 0)-_MYLQ(R, 0)+1) *
(_MYH (R 1) - _MYLQ(R, 1) +1) *
si zeof (el ement)) ;
ACCESS(Ai,j) = A+ ((i-_MLQR 0))*nuntol s) +
(j-_MLA(R 1));

o I
' Optimizing ZPL Arrays

® This method requires 2 subtractions, 2 additions, and
1 multiplication per array, per iteration

* But all we're doing is iterating over a solid block of
memory!!

¢ Instead we can walk a pointer over memory:

Val ker = A 1\ col _of fset
for (i=.) {
for (j=.) { row_of f set
*Wal ker = *Wal ker + 1;
*Wal ker += Col _Off set;
}
*Wal ker += Row_Of f set;
__)

prepared by Brad Chamberlain 13

ZPL Array Operator Wrap-up

CSE 590ZPL (2/3/99)

-

_

'Conclusions

* For portably compiling a high-level language
like ZPL, using C as a back-end is great
+ compiles on all machines
+ saves us from implementing traditional
optimizations
+ instead, can focus on issues unique to ZPL and
parallel programming
¢ communication insertion
¢ communication optimizations
¢ array semantics

— though similar to assembly, C is still not perfect

~

)

-

ZPL Summary

* Performance competitive with hand-coded
C + MPI/PVM

* Released to the public July 1997 via web
¢ User community spans many disciplines

* Continual improvements to language and
compiler

http://www.cs.washington.edu/research/zpl
mailto:zpl-info@cs.washington.edu

prepared by Brad Chamberlain

14

