
Susan Eggers 1 CSE 401

What is a compiler?

Susan Eggers 2 CSE 401

Compilation in the context of language
processing

Susan Eggers 3 CSE 401

Overview of a compiler

Front-end issues (analysis):

• lexical analysis (scanning): characters → tokens

• syntax analysis (parsing): tokens → abstract syntax trees

• semantic analysis (type checking): annotate ASTs

Intermediate representation generation:

abstract syntax trees (ASTs) → intermediate
representation (IR)

Back-end issues (synthesis):

• run-time storage representations

• optimizations

• target code generation: IR→ assembly code

Susan Eggers 4 CSE 401

Example

Susan Eggers 5 CSE 401

Lexical analysis

“Scanning”

Read in characters, clump into tokens

• recognize reserved words

• keywords, operators, punctuation

• form identifiers

• strip out whitespace in the process

Regular expressions used to specify the tokens

Enter identifiers into the symbol table

• data structure with entry for each identifier

• fields for identifier attributes

Susan Eggers 6 CSE 401

Specifying tokens: regular expressions

Example:

Ident ::= Letter AlphaNum*

Integer ::= Digit+

AlphaNum ::= Letter | Digit

Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z'

Digit ::= '0' | ... | '9'

Susan Eggers 7 CSE 401

Syntax analysis

“Parsing”

Read in tokens, turn into an abstract syntax tree based on
syntactic structure

• operators are interior nodes

• operands are leaves

Checks that statements are correct

Filter out “noise” tokens

Syntactic structure specified by a grammar of the language

• resolve precedence

Add attributes to symbol table

Susan Eggers 8 CSE 401

Specifying syntax: context-free grammars

BNF is a popular notation for CFG’s

Example:

Stmt ::= AsgnStmt | IfStmt | ...

AsgnStmt ::= LValue := Expr ;

LValue ::= Id

IfStmt ::= if Test then Stmt [else Stmt] ;

Test ::= Expr = Expr | Expr < Expr | ...

Expr ::= Term + Term | Term - Term | Term

Term ::= Factor * Factor | ... | Factor

Factor ::= - Factor | Id | Int | (Expr)

Susan Eggers 9 CSE 401

Semantic analysis

“Typechecking”

Given AST:

• perform static consistency checks: type checking

• figure out what declaration each name refers to

• annotate the AST

Susan Eggers 10 CSE 401

Intermediate Representation

Given annotated AST & symbol table:

• produce 3 address code

Allows:

• multiple languages for the same target machine

• multiple target machines for the same language

Susan Eggers 11 CSE 401

Storage layout

Given symbol tables,
determine how & where variables will be stored at run-time

What representation for each kind of data?

How much space does each variable require?

In what kind of memory should it be placed?

• static, global memory

• stack

• heap

Where in that kind of memory should it be placed?

• e.g. what stack offset

Susan Eggers 12 CSE 401

Optimizations

Machine independent optimizations, e.g.,

• constant folding

• constant propagation

• common subexpression elimination

Susan Eggers 13 CSE 401

Target code generation

Given an IR,
produce relocatable target code

Translate IR into machine-specific target instructions

• instruction selection

• register allocation

• code scheduling

Susan Eggers 14 CSE 401

Phases & Passes

Phase: a function of the compiler

Pass : read in & process program representation & write out

Multiple passes:

+ more flexibility in phase order

+ can do repeated optimizations

+ requires less memory

- slower

