
CSci 401 Introduction to Compilers
Final Exam

Spring 1998 W.L. Ruzzo

1. (15 points) Eliminate left recursion from the following grammar using the general

method presented in the text.

S ! (L) j atom
L ! L , S j S

2. (20 points) For the grammar below with start symbol E:

(a) Compute FIRST for each right hand side and FOLLOW(E) (in the table below).

Rule FIRST FOLLOW

(1) E ! E ; E

(2) E ! a

(3) E ! �

(b) Fill in the \parsing table" below, showing for each nonterminal and each lookahead

symbol which productions (if any) could be used to expand that nonterminal when

parsing a string with that lookahead. Cells you leave blank are assumed to be

cases where the parser should signal an error.

Lookahead Symbol

Nonterminal a ; $

E

(c) Is the grammar LL(1)? Why or why not?

3. (15 points) In general, can all array indexing operations be bounds-checked as part of

compile-time static type checking? Why or why not? If not, outline when and how it

can be done.

4. (15 points) Consider the following program:

Module M;

var z:int;

procedure foo(x:int, y:int);

begin

x := x + y;

z := z + x + y;

end foo;

1

begin

z := 5;

foo(z, z);

output := z;

end M.

(a) What are the possible outputs of this program assuming call-by-value parameter

passing?

(b) What are the possible outputs of this program assuming call-by-reference param-

eter passing?

(c) What are the possible outputs of this program assuming call-by-value-result (also
called copy in/copy out) parameter passing?

5. (20 points) For the following program, draw the activation records, dynamic links, and

static links for the program when execution reaches the point marked HERE. (You do

not need to show o�sets or other internal structure in the activation records.)

module M;

procedure P();

procedure Q();

begin

HERE

Q();

end Q;

begin

Q();

end P;

procedure R();

begin

P();

end R;

begin

R();

end M.

6. (25 points) The marketing department wants you to add some debugging aids to help

programmers writing Pl/0 programs (as opposed to the Pl/0 compiler writers). In

particular, they want you to provide a library procedure called \dump()," which takes

no parameters, and can be called at any point (or points) during the execution of a

Pl/0 program to produce a listing of the names and values of all programmer-declared

2

variables lexically visible at the point of call. Describe how you would do this. In

particular, note that the compiler would have to provide some information about the

source program so that dump() could do its job. What information would it need to

provide, where should that information be placed, how would dump() �nd it, and how

would it use it? Does the compiled code need to be changed in any way, for example

to maintain extra information in the run-time stack? Be as speci�c as possible. (Note

that the same dump() procedure can be used by all source programs; the compiler

doesn't produce a di�erent version for each source program or call site.)

How would your answer change if dump() was to show all programmer-declared vari-

ables having values, rather just the lexically visible ones? (Remember to consider

recursion.)

7. (25 points) Suppose the PL/0 language were modi�ed to allow array bounds to be

computed at run-time, e.g.

...

procedure foo(n:int);

var a:array[n] of array[n] of int;

...

Brie
y discuss how this would change run-time storage layout and code generation.

8. (25 points) The designers of the language Jaba, having missed my remarkably lucid

explanation of block-structured scope rules, decided that they complicate the compiler

and make a language somewhat error-prone (e.g. forgetting a local declaration of a

variable name that happens to exist in an enclosing block) and harder to read (\where

is foobar, anyway?"). Instead, they decided that all references to variables that are

not local to the current procedure should be fully quali�ed. That is, if procedure P

is declared inside procedure Q which is in turn declared inside the top-level procedure

R, then inside P you would write x + R.Q.y + R.z to add together variables x, y,

and z declared in P, Q, and R, respectively.

(a) Discuss how you would change the symbol table and associated routines to ac-

commodate such a requirement.

(b) True or False: this change would allow you to eliminate static links and/or displays

from the runtime environment, since you now know exactly where every variable

comes from. Justify your answer.

9. (20 points) Intermediate code generally assumes an unlimited number of registers (or

makes essentially no mention of registers at all). What advantages does this have?

10. (20 points) What is the di�erence between peephole and local optimization?

Which is better? Which is easier? Justify.

3

