
Susan Eggers  1 CSE 401

Optimizations

Identify inefficiencies in target or intermediate code

• usually IR

• machine-independent optimizations

Goal: replace with equivalent but better sequences

• fewer instructions

• cheaper instructions

• different instructions

• fewer registers

“Optimize” overly optimistic; “usually improve”

Must reproduce the same results

Susan Eggers  2 CSE 401

Optimizations

Scope of study for optimizations:

• peephole :
look at single instruction/adjacent instructions

• local :
look at straight-line sequence of statements

• global  (int raprocedural ):
look at whole procedure

• int erprocedural :
look across procedures

Larger scope ⇒ better optimization, more complexity

Susan Eggers  3 CSE 401

Peephole optimization

After  code generation, look at adjacent instructions
(a “peephole ” on the code stream)

• try to replace:

• single instruction

• adjacent instructions

with a shorter, faster sequence of code

Susan Eggers  4 CSE 401

Algebraic simplifications

Eliminate redundant code

x := x + 0
x := x * 1
x := (x + y) - y

Susan Eggers  5 CSE 401

Algebraic simplifications

Strength reduction

• replace expensive operation with a cheaper one

a := b * 8;

mult $5, $4, #8
⇒

sll $5, $4, 3

Susan Eggers  6 CSE 401

Algebraic simplifications

Constant folding : evaluate constant expressions

x := 3 + 4

li $4, #7
sw $4, 0( addr of x )



Susan Eggers  7 CSE 401

Redundant instruction elimination

Eliminate redundant loads & stores

a := b + b
c := a
...

lw $4, 0( addr of b )
lw $5, 0( addr of b )
add $6, $4, $5
sw $6, 0( addr of a )

lw $4, 0( addr of a )
sw $4, 0( addr of c )
...

⇒

lw $4, 0( addr of b )
add $6, $ 4, $ 4
sw $6, 0( addr of a )

sw $6, 0( addr of c )
...

Susan Eggers  8 CSE 401

Redundant instruction elimination

Unreachable code

Unlabeled instructions after a goto  can be eliminated

#define debug 0
...
if (debug) {...}

⇒
if 0 <> 1 goto L2
debug stmts

L2: ...

⇒
goto L2
debug stmts (the peephole opt)

L2: ...

⇒
L2: ...

Susan Eggers  9 CSE 401

Flow of control optimizations

“Adjacent” instructions = “adjacent in control flow”

Eliminate jumps to jumps

goto L1
...

L1: goto L2

⇒

goto L2
...

L1: goto L2

Susan Eggers  10 CSE 401

Flow of control optimizations

Eliminate jumps after conditional branches

if a < b then
if c < d then

do nothing
else

stmt 1;
end;

else
stmt 2;

end;

assume a in $1, b in $2, c in $3, d in $4

slt $5, S1, $2
beq $5, $0, L2
slt $5, $3, $4
beq $5, $0, L1 ⇒ bne $5, $0, L3
br L3 ⇒

L1: stmt 1 ⇒ stmt 1

br L3
L2: stmt 2

L3: ...

Susan Eggers  11 CSE 401

Instruction selection

sub sp, 4, sp
mov r1, 0(sp)

⇒
mov r1, -(sp)

mov 12(fp), r1
add r1, 1, r1
mov r1, 12(fp)

⇒
inc 12(fp)

(68000 code)

Susan Eggers  12 CSE 401

Local optimization

Analysis and optimizations within a basic block

Basic block : straight-line sequence of statements

• no control flow into or out of sequence

• start of basic blocks

• beginning of program

• target of conditional or conditional goto

• statement immediately following conditional or
conditional goto

Better than peephole

Not too hard to implement

Machine-independent, if done on intermediate code



Susan Eggers  13 CSE 401

Local constant folding & constant
propagation

Constant folding : evaluate constant expressions

Constant propagation :

• if a variable is assigned a constant, replace downstream
uses of the variable with that constant

• why do we want the compiler, not the programmer to do
constant propagation?

Can enable more constant folding

Susan Eggers  14 CSE 401

Local constant folding & constant
propagation

Source:

const count:int = 10;
...
x := count * 5;
y := x ^ 3;

Unoptimized intermediate code:

t1 := 10

t2 := 5

t3 := t1 * t2

x := t3

t4 := x

t5 := 3

t6 := exp(t4, t5)

y := t6

Susan Eggers  15 CSE 401

Local copy propagation

Copy propagation :

• if have an assignment, use RHS in downstream references
to LHS

• can lead to dead code elimination

x := t3
y := z + x

⇒
x := t3
y := z + t3

Susan Eggers  16 CSE 401

Local dead assignment elimination

Eliminate when result is never referenced again

• define: assign to

• use: reference

• live : variable is live at some program point if used later on

otherwise dead

x := y + z;
a := y + x;

Susan Eggers  17 CSE 401

Local common subexpression elimination
(CSE)

Common subexpression :

• previously computed

• none of its variables have changed

a := b + c

b := a - d

c := b + c

d := a - d

Use the previously computed value instead of repeating the
same calculation

Keep track of available expressions

Susan Eggers  18 CSE 401

Local common subexpression elimination
(CSE)

Source:

... a[i] + b[i] ...

Unoptimized intermediate code:

t2 := i * 4

t3 := t2 + &a

t4 := *(t3)

t6 := i * 4

t7 := t6 + &b

t8 := *(t7)

t9 := t4 + t8



Susan Eggers  19 CSE 401

Int raprocedural (“global”) optimizations

Enlarge scope of analysis to whole procedure

• more opportunities for optimization

• have to deal with splits, merges, and loops

Can do constant propagation,
common subexpression elimination, etc.
at global level

Can do new optimizations, e.g., loop optimizations

Optimizing compilers usually work at this level

Susan Eggers  20 CSE 401

Loop-invariant code motion

Goal: hoist loop-invariant calculations  out of loops

• result does not change as execute the iterations

Source:

for i := 1 to 10 do
a[i] := a[i] + b[j] ;
z := z + 100000 ;

end;

Transformed source:

var1 := b[j];
var2 := 100000;
for i := 1 to 10 do

a[i] := a[i] + var1;
z := z + var2;

end;

Susan Eggers  21 CSE 401

Code motion at intermediate code level

Source:

for i := 1 to 10 do
a[i] := b[j] ;

end;

Unoptimized intermediate code:

*(fp + offset i ) := 1
_top:

if *(fp + offset i ) > 10 goto _done

t1 := *(fp + offset j )
t2 := t1 * 4
t4 := *(t2 + &b)

t5 := *(fp + offset i )
t6 := t5 * 4
*(t6 + &a) := t4

t9 := *(fp + offset i )
t10 := t9 + 1
*(fp + offset i ) := t10

goto _top
_done:

Susan Eggers  22 CSE 401

Loop induction variable elimination

For-loop index is induction variable

If used only to index arrays, can rewrite with pointers

Source:

for i := 1 to 10 do
a[i] := a[i] + x;

end;

Transformed source:

for p := &a[1] to &a[10] do
*p := *p + x;

end;

Susan Eggers  23 CSE 401

Global register allocation

Try to allocate global variables to registers

• avoid stores and reloading at basic block boundaries

Make sure a globally used variable doesn’t conflict with a local

Example:

procedure foo( n:int, x :int):int;

var sum:int, i:int;
begin

sum := x ;

for i  := 1 to n do

sum := sum + i ;
end;

q := 17;
output q;

return sum;
end foo;

Susan Eggers  24 CSE 401

How to do global optimizations?

Represent procedure by a control flow graph

Each basic block  is a node in graph

Branches become edges in graph

Example:

procedure foo(n:int);
var a:array[10] of int;
var i:int, j:int;

begin
j := 10;
for i := 0 to 9 do

a[i] := a[i] + (n - j * 2);
end;

end foo;



Susan Eggers  25 CSE 401

Analysis of control flow graphs

To do optimization,
first analyze important info, then do transformations

Propagate info through graph

At branches: copy info along both branches

At merges: combine info, being conservative

• constant propagation, CSE: intersection

• live variable analysis: union

At loops: iterate until annotations do not change (fixpoint }

E.g., global constant propagation:
propagate name→constant mappings through graph

Susan Eggers  26 CSE 401

Global constant propagation

y := x

x := 5

x := 3 z := x + 2
w := 3

{x⇒5}

{x⇒3}

{x⇒5}

{x⇒5, z⇒7}

{x⇒5, z⇒7, w⇒3}

{x⇒5, z⇒7, w⇒3}

{}

{}

Susan Eggers  27 CSE 401

Interprocedural optimizations

Expand scope of analysis to procedures calling each other

Can do local, intraprocedural optimizations at larger scope

Can do new optimizations, e.g., inlining

Susan Eggers  28 CSE 401

Inlining

Replace procedure call with body of called procedure

Source:
const pi:real := 3.1415927;
proc circle_area(radius:int):int;

begin
return pi * (radius ^ 2);

end circle_area;
...
r := 5;
...
output := circle_area(r);

After inlining:

const pi:real := 3.1415927;
...
r := 5;
...
output := pi * (r ^ 2);

Susan Eggers  29 CSE 401

Summary

Optimizations lead to more efficient code

Enlarging scope of analysis yields better results

• today, most optimizing compilers work at the
global/intraprocedural level

Optimizations organized as collections of passes

Some optimizations enable others

• e.g., CSE or constant propagation -> dead assignment
elimination

• e.g., constant propagation -> constant folding

Presence of optimizations makes other parts of compiler easier

• register allocation has fewer temporaries

• target code generation only has to generate code

Susan Eggers  30 CSE 401

Optimization summary

Peep
hole Local

Intra-
proced
ural

Inter-
proced
ural

algebraic simplification x

strength reduction x

constant folding & propaga-
tion

x x x x?

redundant ld/st x x x x?

dead code elimination x x

jumps to jumps/cond. jumps x

CSE x x x x?

copy propagation x x x x?

loop invariant code motion x

induction variable elimina-
tion

x

instruction selection x x

register allocation x x x x?

code scheduling x x

inlining x


