
Susan Eggers 1CSE 401

Lexical Analysis / Scanning

Purpose: turn character stream (input program)
into token stream

• groups characters into tokens

• ignoring whitespace

• associate line number in program & error message

• handling I/O, machine dependencies

Token: group of characters forming basic, atomic chunk of
syntax

• identifiers

• operators

• keywords

• constants

Whitespace:
characters between tokens that are ignored

Susan Eggers 2CSE 401

Separate Lexical and Syntactic Analysis

Separation of function

• scanner:

• handle grouping chars into tokens

• parser:

• handle grouping tokens into syntax trees

Advantages:

• simpler design

• faster scanning

• scanning is time-consuming in many compilers

• can build lexical analyzer & parser generators

• scanner a subroutine of parser

• “get the next token”

Susan Eggers 3CSE 401

Wide applicability of lexical analysis

Pattern matching: match input string to specified patterns

• query language for a database

• configuration parameters for a cache simulator

• silicon compiler

• editing language

•

•

Susan Eggers 4CSE 401

Lexemes, tokens, and patterns

Lexeme: group of characters that form a token

Token: set of lexemes that match a pattern

Pattern: description of string of characters

rules that describes a set of lexemes that represent a

particular token

Token may have attributes, if more than one lexeme in token

Susan Eggers 5CSE 401

Regular expressions

Notation for specifying patterns of lexemes in a token

Regular expressions:

• powerful enough to do this

• simple enough to be implemented efficiently

• precise

• equivalent in power to finite state machines

Susan Eggers 6CSE 401

Syntax of regular expressions

REs built out of simpler REs according to rules

Defined inductively

• base cases:
the empty string (ε)
a symbol from the alphabet (x)

• inductive cases:
concatenation: sequence of two RE’s: E1E2
union: either of two RE’s: E1| E2
Kleene closure: zero or more occurrences of a RE: E*

Notes:

• precedence: * highest, concatenation, | lowest

• can use parens for grouping

• whitespace insignificant

Susan Eggers 7CSE 401

Notational conveniences

E+ means 1 or more occurrences of E

Ek means k occurrences of E

[E] means 0 or 1 occurrence of E (optional E)

{ E} means E*

not (x) means any character in the alphabet but x

not (E) means any string of characters in the alphabet but
those matching E

E1- E2 means any string matching E1 except those matching E2

[ab] means a | b

[a-z] means a | b | ... | z

Susan Eggers 8CSE 401

Naming regular expressions

Can assign names to regular expressions

Can use the name of a RE in the definition of another RE

Examples:

letter ::= a | b | ... | z

digit ::= 0 | 1 | ... | 9

alphanum ::= letter | digit

BNF-like notation for RE’s

Can reduce named RE’s to plain RE by “macro expansion”

• no recursive definitions allowed

Susan Eggers 9CSE 401

Using regular expressions to specify tokens

Identifiers

ident ::= letter (letter | digit) *

Integer constants

integer ::= digit +

sign ::= + | -

signed_int ::= [sign] integer

Real number constants

real ::= signed_int
[fraction] [exponent]

fraction ::= . digit +

exponent ::= (E| e) signed_int

Susan Eggers 10CSE 401

String and character constants

string ::= " char * "

character ::= ' char '

char ::= not (" | ' | \) | escape

escape ::= \(" | ' | \ | n| r | t | v | b| a)

Whitespace (not a token)

whitespace ::= <space> | <tab> | <newline>
| comment

comment ::= /* not (*/) */

Susan Eggers 11CSE 401

Regular expressions for PL/0 lexical
structure

Program ::= (Token | White) *

Token ::= Id | Integer | Keyword | Operator |
Punct

Punct ::= ; | : | . | , | (|)

Keyword ::= module | procedure | begin | end |
const | var | if | then | while |
do | input | output | odd | int

Operator ::= := | * | / | + | - |
= | <> | <= | < | >= | >

Integer ::= Digit +

Id ::= Letter AlphaNum *

AlphaNum ::= Letter | Digit

Digit ::= 0 | ... | 9

Letter ::= a | ... | z | A | ... | Z

White ::= <space> | <tab> | <newline>

Susan Eggers 12CSE 401

Building scanners from RE patterns: the big
picture

Specify patterns with

regular expressions

Convert RE specification into
nondeterministic finite state machine

Convert nondeterministic finite state machine into a
deterministic finite state machine

Convert deterministic finite state machine into

scanner implementation

• a collection of procedures

• table-driven scanner

Susan Eggers 13CSE 401

Finite State Machines/Automata

A FSA has:

• a set of states

• one marked the initial state

• some marked final states

• a set of transitions from state to state

• each transition labelled with a symbol from the
alphabet or ε

• Operate by reading symbols and taking transitions,
beginning with the start state

• if no transition with a matching label is found, reject

If reach the final state, accept; otherwise reject

/ /**

not (*) *

not (*,/)

Susan Eggers 14CSE 401

Identifiers & keywords

FSM would be complicated if included keywords

Solution:

• put keywords in the symbol table

• lookup after reach accept state for identifiers

letter

letter or digit

other

Susan Eggers 15CSE 401

Unsigned numbers

digit

digit .

digit

digitE|e +|-

digit

digit other

E|e

digit otherdigit.

digit digit

digit

digit

other

Susan Eggers 16CSE 401

Determinism
FSA can be deterministic or nondeterministic

Deterministic: always know which way to go

• at most 1 arc leaving a state with particular symbol

• no ε arcs

Nondeterministic: may need to explore multiple paths

• multiple arcs leaving a state with the same symbol

• ε is a legal arc

• accepts input string if some path leads to final state

Example:

0

1 1

1

000

Susan Eggers 17CSE 401

Comparing complexity of NFA and DFA

RE’s map to NFA’s easily

Susan Eggers 18CSE 401

Can write code from DFA easily

Susan Eggers 19CSE 401

Converting DFAs to code

Option 1: implement scanner using procedures

• one procedure for each token (FSM diagram)

• each procedure reads characters until failure

• choices implemented using case statements

Pros

• straightforward to write by hand

• fast

Cons (if written by hand)

• more work than using a tool

• sometimes hard to interpret the REs correctly

Susan Eggers 20CSE 401

Pl0 scanner
Parser calls scanner

• input file already open

Constructor does initialization (Scanner)

Scanner repeatedly scans characters & returns tokens

(Get() in ScanProgram())

• scans over whitespace (SkipWhiteSpace())

• identifiers & keywords (GetIdent())

• string compare in binary search

• integers (GetInt())

• converts to decimal

• operators & punctuation (GetPunc())

• conditional reads

• case statements

Susan Eggers 21CSE 401

Converting DFAs to code

Option 2: implement table-driven scanner

• rows: states of DFA

• columns: input characters

• entries: action

• go to new state

• accept token, go to start state

• error

• actions written in code

• interpreter for the table

Pros

• convenient for automatic generation (e.g. lex)

Cons

• table lookups slower than direct code

Susan Eggers 22CSE 401

Automatic construction of scanners

Approach:

1) Convert RE into NFA

2) Convert NFA into DFA

3) Convert DFA into table-driven code

Susan Eggers 23CSE 401

RE -> NFA (via Thompson’s algorithm)

(1) Expand RE into basic symbols

(2) Construct NFAs for the symbols

(3) Combine NFAs inductively

• 1 start state, 1 final state

Susan Eggers 24CSE 401

RE ⇒ NFA

Define by cases

ε

x

E1 E2

E1 | E2

E *

Susan Eggers 25CSE 401

NFA ⇒ DFA

Problem: NFA can “choose” among alternative paths,
while DFA must have only one path

Solution: subset construction of DFA

• each state in DFA represents set of states in NFA that can
be reached by a given input symbol

Susan Eggers 26CSE 401

Subset construction algorithm

Given NFA with states and transitions

• label all NFA states uniquely

Create start state of DFA

• label it with the set of NFA states that can be reached by
ε transitions (i.e. without consuming any input)

Process the start state

To process a DFA state S with label {s1,..,sN}:

For each input symbol x:

• compute the set T of NFA states reached from any of the
NFA states s1,..,sN by a x transition followed by any
number of ε transitions

• if T not empty:

• if T is already in the DFA, add a transition labeled s
from S to T

• otherwise create a new DFA state labeled T, add a
transition labeled x from S to T, and process T

A DFA state is final iff
at least one of the NFA states in its label is final

