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Lexical Analysis / Scanning

Purpose: turn character  stream (input program)
into token stream

• groups characters into tokens

• ignoring whitespace

• associate line number in program & error message

• handling I/O, machine dependencies

Token: group of characters forming basic, atomic chunk of
syntax

• identifiers

• operators

• keywords

• constants

Whitespace:
characters between tokens that are ignored
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Separate Lexical and Syntactic Analysis

Separation of function

• scanner:

• handle grouping chars into tokens

• parser:

• handle grouping tokens into syntax trees

Advantages:

• simpler design

• faster scanning

• scanning is time-consuming in many compilers

• can build lexical analyzer & parser generators

• scanner a subroutine of parser

• “get the next token”

Susan Eggers 3CSE 401

Wide applicability of lexical analysis

Pattern matching: match input string to specified patterns

• query language for a database

• configuration parameters for a cache simulator

• silicon compiler

• editing language

•

•
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Lexemes, tokens, and patterns

Lexeme: group of characters that form a token

Token: set of lexemes that match a pattern

Pattern: description of string of characters

rules that describes a set of lexemes that represent a

particular token

Token may have attributes, if more than one lexeme in token
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Regular expressions

Notation for specifying patterns of lexemes in a token

Regular expressions:

• powerful enough to do this

• simple enough to be implemented efficiently

• precise

• equivalent in power to finite state machines
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Syntax of regular expressions

REs built out of simpler REs according to rules

Defined inductively

• base cases:
the empty string (ε)
a symbol from the alphabet (x )

• inductive cases:
concatenation: sequence of two RE’s: E1E2
union: either of two RE’s: E1| E2
Kleene closure: zero or more occurrences of a RE: E*

Notes:

• precedence: *  highest, concatenation, |  lowest

• can use parens for grouping

• whitespace insignificant
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Notational conveniences

E+ means 1 or more occurrences of E

Ek means k  occurrences of E

[ E]  means 0 or 1 occurrence of E (optional E)

{ E}  means E*

not ( x)  means any character in the alphabet but x

not ( E)  means any string of characters in the alphabet but
those matching E

E1- E2 means any string matching E1 except those matching E2

[ab]  means a | b

[a-z]  means a | b | ... | z
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Naming regular expressions

Can assign names to regular expressions

Can use the name of a RE in the definition of another RE

Examples:

letter ::= a | b | ... | z

digit ::= 0 | 1 | ... | 9

alphanum ::= letter | digit

BNF-like notation for RE’s

Can reduce named RE’s to plain RE by “macro expansion”

• no recursive definitions allowed
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Using regular expressions to specify tokens

Identifiers

ident ::= letter (letter | digit) *

Integer constants

integer ::= digit +

sign ::= + | -

signed_int ::= [sign] integer

Real number constants

real ::= signed_int
[fraction] [exponent]

fraction ::= .  digit +

exponent ::= ( E| e) signed_int
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String and character constants

string ::= "  char * "

character ::= '  char '

char ::= not ( " | ' | \ ) | escape

escape ::= \( " | ' | \ | n| r | t | v | b| a)

Whitespace (not a token)

whitespace ::= <space> | <tab> | <newline>
| comment

comment ::= /* not (*/) */
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Regular expressions for PL/0 lexical
structure

Program ::= (Token | White) *

Token ::= Id | Integer | Keyword | Operator |
Punct

Punct ::= ;  | :  | .  | ,  | (  | )

Keyword ::= module  | procedure  | begin  | end  |
const  | var  | if  | then  | while  |
do  | input  | output  | odd  | int

Operator ::= :=  | *  | /  | + | -  |
= | <> | <= | < | >= | >

Integer ::= Digit +

Id ::= Letter AlphaNum *

AlphaNum ::= Letter | Digit

Digit ::= 0 | ... | 9

Letter ::= a | ... | z  | A | ... | Z

White ::= <space> | <tab> | <newline>
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Building scanners from RE patterns: the big
picture

Specify patterns with

regular expressions

Convert RE specification into
nondeterministic finite state machine

Convert nondeterministic finite state machine into a
deterministic finite state machine

Convert deterministic finite state machine into

scanner implementation

• a collection of procedures

• table-driven scanner
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Finite State Machines/Automata

A FSA has:

• a set of states

• one marked the initial state

• some marked final states

• a set of transitions from state to state

• each transition labelled with a symbol from the
alphabet or ε

• Operate by reading symbols and taking transitions,
beginning with the start state

• if no transition with a matching label is found, reject

If reach the final state, accept; otherwise reject

/ /**

not (*) *

not (*,/)
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Identifiers & keywords

FSM would be complicated if included keywords

Solution:

• put keywords in the symbol table

• lookup after reach accept state for identifiers

letter

letter or digit

other
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Unsigned numbers

digit

digit .

digit

digitE|e +|-

digit

digit other

E|e

digit otherdigit.

digit digit

digit

digit

other
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Determinism
FSA can be deterministic  or nondeterministic

Deterministic: always know which way to go

• at most 1 arc leaving a state with particular symbol

• no ε arcs

Nondeterministic: may need to explore multiple paths

• multiple arcs leaving a state with the same symbol

• ε is a legal arc

• accepts input string if some  path leads to final state

Example:

0

1 1

1

000

Susan Eggers 17CSE 401

Comparing complexity of NFA and DFA

RE’s map to NFA’s easily
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Can write code from DFA easily
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Converting DFAs to code

Option 1: implement scanner using procedures

• one procedure for each token (FSM diagram)

• each procedure reads characters until failure

• choices implemented using case statements

Pros

• straightforward to write by hand

• fast

Cons (if written by hand)

• more work than using a tool

• sometimes hard to interpret the REs correctly
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Pl0 scanner
Parser calls scanner

• input file already open

Constructor does initialization (Scanner)

Scanner repeatedly scans characters & returns tokens

(Get() in ScanProgram() )

• scans over whitespace (SkipWhiteSpace() )

• identifiers & keywords (GetIdent() )

• string compare in binary search

• integers (GetInt() )

• converts to decimal

• operators & punctuation (GetPunc() )

• conditional reads

• case statements
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Converting DFAs to code

Option 2: implement table-driven scanner

• rows: states of DFA

• columns: input characters

• entries: action

• go to new state

• accept token, go to start state

• error

• actions written in code

• interpreter for the table

Pros

• convenient for automatic generation (e.g. lex )

Cons

• table lookups slower than direct code
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Automatic construction of scanners

Approach:

1) Convert RE into NFA

2) Convert NFA into DFA

3) Convert DFA into table-driven code
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RE -> NFA (via Thompson’s algorithm)

(1) Expand RE into basic symbols

(2) Construct NFAs for the symbols

(3) Combine NFAs inductively

• 1 start state, 1 final state
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RE ⇒ NFA

Define by cases

ε

x

E1 E2

E1 | E2

E *
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NFA ⇒ DFA

Problem: NFA can “choose” among alternative paths,
while DFA must have only one path

Solution: subset construction  of DFA

• each state in DFA represents set of states in NFA that can
be reached by a given input symbol
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Subset construction algorithm

Given NFA with states and transitions

• label all NFA states uniquely

Create start state of DFA

• label it with the set of NFA states that can be reached by
ε transitions (i.e. without consuming any input)

Process the start state

To process a DFA state S with label {s1,..,sN}:

For each input symbol x:

• compute the set T of NFA states reached from any of the
NFA states s1,..,sN by a x transition followed by any
number of ε transitions

• if T not empty:

• if T is already in the DFA, add a transition labeled s
from S to T

• otherwise create a new DFA state labeled T, add a
transition labeled x from S to T, and process T

A DFA state is final iff
at least one of the NFA states in its label is final


