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Target code generation

Input : program as intermediate representation

• three-address code

• ASTs

Output : program as target code

• absolute binary (machine) code

• relocatable binary code

• assembly code

• C

Requirement : must generate correct code

Differences in generated code quality & time to generate
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Task of code generator

Bridge the gap between:

• intermediate code (machine independent)

• target code (machine dependent)

Instruction selection

• for each IR instruction (or sequence),
select target language instruction (or sequence)

Register allocation

• for each IR variable,
select target language register/stack location

Code scheduling

• decide the order of the target language instructions
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Instruction selection

Given one or more IR instructions,
pick “best” sequence of target machine instructions
with same semantics

“best” = fastest, usually fewest

Difficulty depends on nature of target instruction set

• CISC: hard

• lots of alternative instructions with similar semantics

• lots of tradeoffs among speed, size
• often not completely orthogonal

• RISC: easy

• usually only one choice

• closely resembles IR instructions

• C: easy if C is appropriate for the desired semantics

• ex: many high-level languages require check for
integer overflow
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Example

1 IR instruction can require several target instructions

IR code :

t3 := t1 + t2

Target code  (MIPS):

add $3,$1,$2

Target code  (SPARC):

add %1,%2,%3

Target code  (68k):

mov.l d1,d3
add.l d2,d3
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Another example

Can have choices of which instruction(s) to select

IR code :

t1 := t1 + 1

Target code  (MIPS):

addi $1,$1,1

Target code  (SPARC):

add %1,1,%1

Target code  (68k):

add.l #1,d1

or
inc.l d1
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Yet another example

Several IR code instructions can combine to 1 target instruction
⇒ hard !

IR code :
// push x onto stack
sp := sp - 4
*sp := t1

Target code  (MIPS):

sub $sp,$sp,4
sw $1,0($sp)

Target code  (SPARC):

sub %sp,4,%sp
st %1,[%sp]

Target code  (68k):

mov.l d1,-(sp)
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A final example

Source code:

a++; // “a” is a global variable

IR code :

t1 := a
t1 := t1 + 1
a := t1

Target code :

lw $1, 0( address of a)
add $1, $1, 1
sw $1, 0( address of a)
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Instruction selection in PL/0

Do very simple instruction selection,
as part of generating code for AST node

Interface to target machine: assembler  class

• function for each kind of target instruction

• hides details of assembly format, etc.
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Register allocation

IR uses unlimited temporary variables

• makes intermediate code generation easy

• makes intermediate code machine-independent

Target machine has fixed & few resources for holding values

Registers much faster than memory

Consequences:

• should try to keep values in registers if possible

• want to choose most frequently accessed values

• want to choose values accessed in a small program range

• must free registers when no longer needed

• must be able to handle out-of-registers condition
⇒ spill  some registers to home stack locations

• must interact with instruction selection on CISCs
⇒ makes both jobs harder

• must interact with instruction scheduling on RISCs
⇒ makes both jobs harder
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Classes of registers

What registers can the allocator use?

Dedicated registers

• claimed by instruction set architecture (hardware) for a
special purpose

• register hardwired to 0, return address, ...

• claimed by calling convention (software)

• FP, argument registers 1-4, ...
• not easily available for storing locals

• examples

• MIPS, SPARC: 32 registers, but not all are general
purpose

• 68k: 16 registers, divided into data and address regs

• x86: 4 data registers, plus 12 special-purpose registers

Scratch registers

• couple of registers kept around for temporary values

• e.g. loading a spilled value from memory in order to
operate on it

Allocatable registers  are the ones that are left!
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Classes of variables

What variables can the register allocator try to put in registers?

Temporary variables : easy to allocate

• defined & used exactly once, during expression evaluation
⇒ allocator can free up register after used

• usually not too many in use at one time
⇒ less likely to run out of registers

Local variables : hard, but doable

• more of these & their lifetimes  are longer
⇒ need to make decision about which variables get
registers

• need to free a register when its value is not longer needed
⇒ need to determine the last use  of the variable

• what about assignments to a local through pointer?

• what about debugging?

Global variables : really hard

• have to analyze whole program
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Pl/0 register allocator

Keep set of allocated registers as codegen proceeds

• RegisterBank  class in PL/0

During codegen, allocate one from set

• Reg temp = rb->getNew();

• modify register bank to record that temp  is taken

• what if no registers available?

When done with register, release it

• rb->free(temp);

• modify register bank to record that temp  is free
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“Real” register allocators

Register allocation

(1) Decide which variables  should go into registers

• how frequently they are used
allocate most frequently used variables to regs first

• how long they are used

• if two variables don’t overlap, then give to same register

(2) Decide how long they should stay there (register spilling )

Register assignment

(3) Decide which variable goes into which register

Technique is called register coloring

Why it’s difficult:

• optimal register assignment is NP-complete

• some registers can only be used for special purposes

• some registers must be used in consecutive pairs
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Code scheduling

Iterate for each basic block:

(1) determine all instructions that are ready to execute

• operands have been computed
add $3 , $2, $2 (assume ready)
sub $6 , $5, $4 (assume ready)
mult $7, $3 , $6 (not ready)

(2) put them in the ready list

(3) pick one on the critical path

• example heuristic: instruction that has the longest chain of
dependent instructions

add $1 , $6, $8 (ready)
sub $2 , $1 , $8
mult $3 , $2 , $8
add $4, $3 , $8
sub $5, $3 , $8
ld $6, 0($8) (ready)

• example heuristic: instruction with the longest latency

List scheduling
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Some codegen routines

Reg IntLiteral ::codegen(Scope* s, RegBank* rb) {
Reg dest = rb-> getNew ();
TheAssembler-> loadImmediate (dest, _value);
return dest;

}

Reg BinOp ::codegen(Scope* s, RegBank* rb) {
Reg r1 = _left->codegen(s, rb);
Reg r2 = _right->codegen(s, rb);

rb-> free (r1);
rb-> free (r2);
Reg dest = rb-> getNew ();

TheAssembler-> arith (_op, dest, r1, r2);

return dest;
}

void AssignStmt ::codegen(Scope* s, RegBank* rb) {
Reg result = _expr->codegen(s, rb);

int offset;
Reg base = _lvalue->codegen_addr(s, rb, offset);

TheAssembler-> store (result, base, offset);

rb-> free (base);
rb-> free (result);

}
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An example using Pl/0

Source code:

var x;
...
x := x + 2 * (x - 1);
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Function call codegen routine

Reg FuncCall ::codegen(Scope* s, RegBank* rb) {
// evaluate & push arguments
foreach arg, right to left {

Reg a;
if (pass by value) {

a = arg->codegen(s, rb);

} else {
// pass by reference
int offset;
Reg base = arg->codegen_addr(s, rb, offset);

Reg o = rb-> getNew ();
TheAssembler-> loadImmediate (o, offset);

rb-> free (base);
rb-> free (o);
a = rb-> getNew ();
TheAssembler-> arith (PLUS, a, base, o);

}

TheAssembler-> push (SP, a);
rb-> free (a);

}

...
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...

// evaluate & push static link
Reg link = s->getFPOf(enclosingScope, rb);
TheAssembler-> push (SP, link);
rb-> free (link);

// save any allocated regs across call
rb->saveRegs(s);

// call
TheAssembler-> call (_ident);

// restore saved regs
rb->restoreRegs(s);

// pop off args & static link
TheAssembler-> popMultiple (SP,(#args+1)*sizeof(int));

// allocate temp reg for result of call
Reg dest = rb-> getNew ();
TheAssembler -> move(dest, RET0);

// return result
return dest;

}
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Another example

Source code:

x := y + 4;
z := x * 8;


