Target code generation

Input : program as intermediate representation
« three-address code
* ASTs

Output : program as target code
« absolute binary (machine) code
« relocatable binary code
« assembly code
«C

Requirement : must generate correct code
Differences in generated code quality & time to generate

Susan Eggers 1 CSE 401,

Instruction selection

Given one or more IR instructions,
pick “best” sequence of target machine instructions
with same semantics

“best” = fastest, usually fewest

Difficulty depends on nature of target instruction set

« CISC: hard
« lots of alternative instructions with similar semantics
« lots of tradeoffs among speed, size
« often not completely orthogonal

* RISC: easy
« usually only one choice
« closely resembles IR instructions

« C: easy if C is appropriate for the desired semantics

« ex: many high-level languages require check for
integer overflow

Susan Eggers 3 CSE 401

Another example

Can have choices of which instruction(s) to select

IR code:
t1:=tl+1

Target code (MIPS):
addi $1,$1,1

Target code (SPARC):
add %1,1,%1

Target code (68Kk):
add.| #1,d1

or

inc.ld1

Susan Eggers 5 CSE 401

-

Task of code generator

Bridge the gap between:
« intermediate code (machine independent)
+ target code (machine dependent)

Instruction selection

« for each IR instruction (or sequence),
select target language instruction (or sequence)

Register allocation

« for each IR variable,
select target language register/stack location

Code scheduling
« decide the order of the target language instructions

Susan Eggers 2 CSE 401

Ve

-

Example

1 IR instruction can require several target instructions

IR code:
t3:=tl +12

Target code (MIPS):
add $3,$1,$2

Target code (SPARC):
add %1,%2,%3

Target code (68Kk):

mov.l d1,d3
add.l d2,d3

Susan Eggers 4 CSE 401

Ve

-

Yet another example

Several IR code instructions can combine to 1 target instruction
0 hard!

IR code:

// push x onto stack
sp =sp-4
*spi=tl

Target code (MIPS):

sub $sp,$sp,4
sw $1,0($sp)

Target code (SPARC):

sub %sp,4,%sp
st %1,[%sp]

Target code (68Kk):
mov.l d1,-(sp)

Susan Eggers 6 CSE 401

A final example

Source code:
at++; // “a” is a global variable

IR code:
tl:=a
tl:=t1+1
a:==tl

Target code :

lw$1,0(address of a)
add $1, $1, 1
sw $1,0(address of a)

Susan Eggers 7 CSE 401,

Register allocation

IR uses unlimited temporary variables
« makes intermediate code generation easy
« makes intermediate code machine-independent

Target machine has fixed & few resources for holding values
Registers much faster than memory

Consequences:

« should try to keep values in registers if possible
want to choose most frequently accessed values
want to choose values accessed in a small program range
must free registers when no longer needed
must be able to handle out-of-registers condition

O spill some registers to home stack locations
must interact with instruction selection on CISCs

O makes both jobs harder
must interact with instruction scheduling on RISCs

O makes both jobs harder

Susan Eggers 9 CSE 401

Classes of variables

What variables can the register allocator try to put in registers?

Temporary variables : easy to allocate

« defined & used exactly once, during expression evaluation
O allocator can free up register after used

« usually not too many in use at one time
O less likely to run out of registers

Local variables : hard, but doable

« more of these & their lifetimes are longer
0 need to make decision about which variables get
registers

« need to free a register when its value is not longer needed
0 need to determine the last use of the variable

« what about assignments to a local through pointer?
« what about debugging?

Global variables : really hard
« have to analyze whole program

Susan Eggers 1 CSE 401

Instruction selection in PL/O

Do very simple instruction selection,
as part of generating code for AST node

Interface to target machine: assembler class
« function for each kind of target instruction
« hides details of assembly format, etc.

Susan Eggers 8 CSE 401

-

Ve

Classes of registers

What registers can the allocator use?

Dedicated registers

+ claimed by instruction set architecture (hardware) for a
special purpose
« register hardwired to 0, return address, ...

+ claimed by calling convention (software)
« FP, argument registers 1-4, ...
+ not easily available for storing locals

+ examples

« MIPS, SPARC: 32 registers, but not all are general
purpose
« 68k: 16 registers, divided into data and address regs

Scratch registers
« couple of registers kept around for temporary values

« e.g. loading a spilled value from memory in order to
operate on it

Allocatable registers — are the ones that are left!

Susan Eggers 10 CSE 401

-

« Xx86: 4 data registers, plus 12 special-purpose registers

Ve

PI/0 register allocator

Keep set of allocated registers as codegen proceeds
* RegisterBank class in PL/O

During codegen, allocate one from set
« Reg temp = rb->getNew();
« modify register bank to record that temp is taken
« what if no registers available?

When done with register, release it
* rb->free(temp);
« modify register bank to record that temp is free

Susan Eggers 12 CSE 401

-

“Real” register allocators

Register allocation
(1) Decide which variables should go into registers

« how frequently they are used
allocate most frequently used variables to regs first

« how long they are used
« if two variables don't overlap, then give to same register

(2) Decide how long they should stay there (register spilling)

Register assignment
(3) Decide which variable goes into which register

Technique is called register coloring
Why it's difficult:
« optimal register assignment is NP-complete

« some registers can only be used for special purposes
« some registers must be used in consecutive pairs

Susan Eggers 13 CSE 401

-

Some codegen routines

Reg IntLiteral ::codegen(Scope* s, RegBank* rb) {
Reg dest = rb-> getNew ();
TheAssembler-> loadimmediate (dest, _value);
return dest;

Reg BinOp ::codegen(Scope* s, RegBank* rb) {
Reg rl = _left->codegen(s, rb);
Reg r2 = _right->codegen(s, rb);
rb-> free (r1);
rb-> free (r2);
Reg dest = rb-> getNew ();
TheAssembler-> arith (_op, dest, r1, r2);
return dest;

void AssignStmt ::codegen(Scope* s, RegBank* rb) {
Reg result = _expr->codegen(s, rb);
int offset;
Reg base = _lvalue->codegen_addr(s, rb, offset);
TheAssembler-> store (result, base, offset);
rb-> free (base);
rb-> free (result);

Susan Eggers 15 CSE 401

Ve

Function call codegen routine

Reg FuncCall :codegen(Scope* s, RegBank* rb) {
// evaluate & push arguments
foreach arg, right to left {
Reg a;
if (pass by value) {
a = arg->codegen(s, rb);
}else{
// pass by reference
int offset;
Reg base = arg->codegen_addr(s, rb, offset);
Rego=rb-> getNew ();
TheAssembler-> loadimmediate (o, offset);
rb-> free (base);
rb-> free (o);
a=rb-> getNew();
TheAssembler-> arith (PLUS, a, base, 0);

}
TheAssembler-> push (SP, a);
rb-> free (a);
}
Susan Eggers. 17 CSE 401

-

Code scheduling

Iterate for each basic block:

(1) determine all instructions that are ready to execute
« operands have been computed
add $3, $2, $2 (assume ready)
sub $6, $5, $4 (assume ready)
mult $7, $3, $6 (notready)

(2) put them in the ready list

(3) pick one on the critical path
« example heuristic: instruction that has the longest chain of
dependent instructions

add $1, $6, $8 (ready)
sub $2, $1,$8
mult $3, $2,$8
add $4, $3,3$8
sub$5, $3,%$8
Id $6, 0($8) (ready)

« example heuristic: instruction with the longest latency

List scheduling

Susan Eggers 14 CSE 401

Ve

-

An example using PI/0

Source code:
var x;

X=X+ 2% (x-1);

Susan Eggers 16 CSE 401

Ve

-

// evaluate & push static link

Reg link = s->getFPOf(enclosingScope, rb);
TheAssembler-> push (SP, link);

rb-> free (link);

// save any allocated regs across call
rb->saveRegs(s);

// call
TheAssembler-> call (_ident);

// restore saved regs
rb->restoreRegs(s);

// pop off args & static link
TheAssembler-> popMultiple (SP,(#args+1)*sizeof(int));

// allocate temp reg for result of call
Reg dest = rb-> getNew ();
TheAssembler -> move(dest, RETO);

// return result
return dest;

Susan Eggers 18 CSE 401

Another example

Source code:
X=y+4;

Susan Eggers 19 CSE 401

-

