
(Page Left Blank Intentionally)

CSE 401 – Section 10 – Instruction Scheduling and Register Allocation
(Adapted from 19 AU Final)

1. Instruction Scheduling

Consider a hypothetical machine that has the following instructions and number of cycles
for each instruction to complete:

Operation Cycles
LOAD 3

STORE 3
ADD 1

MULT 2
SHIFT 1

 Our compiler’s instruction selection algorithm generated the following series of machine

instructions for the statement y[i] = a*x[i]. Currently, every value is stored in a temporary
register, so we’ll need to select actual registers in a later step.

a. LOAD t1 <- a // t1 = a
b. LOAD t2 <- x // t2 = address of x[] array
c. LOAD t3 <- i // t3 = i
d. SHIFT t4 <- t3, 3 // t4 = i*8 (shiH t3 leH 3)
e. ADD t5 <- t2, t4 // t5 = address of x[i]
f. LOAD t6 <- MEM[t5] // t6 = x[i]
g. MULT t7 <- t1, t6 // t7 = a*x[i]
h. LOAD t8 <- y // t8 = address of y[] array
i. ADD t9 <- t4, t8 // t9 = address of y[i]
j. STORE MEM[t9] <- t7 // store y[i]

Part a.

Draw the precedence graph for the instructions above. The graph should show all the dependencies between
different instructions. Every node in the graph should be labeled with the letter of its corresponding instruction
(a-j) and annotated with the latency. Latency is defined as the minimum number of machine cycles between the
start of the instruction and the end of the last instruction. (Hint: Work from the last instruction up to the first
instruction)

Part b.

Using the precedence graph you drew for Part a, present the order of the instructions as they should be chosen
by the forward list scheduling algorithm. For each cycle, write the scheduled instruction and its type. You do not
need to write the operand(s) for instructions.

Cycle # Instruction Operation

2. Register allocation & graph coloring

Consider the same scenario from problem 1. You should assume the code is executed in the
sequence given and not rearranged before assigning registers.

Part a.

Draw the interference graph for the temporary variables (t1-t9) in the code.

Part b.

Give an assignment of groups of temporary variables to registers that uses the minimum number of registers
possible based on the information in the interference graph. Use R1, R2, R3, … for the register names.

