
Dataflow Analysis + SSA
CSE 401 Sections

Announcements

● Codegen deadline – TONIGHT 11:59 pm. Remember to commit/push/tag

and complete the Gradescope submission. If using late days, may submit at

most two days late (depending on number of remaining late days).

➢ Once codegen is finished, we’ll do an overall evaluation of your compiler, all phases, and

rerun a comprehensive set of tests. This final evaluation is the major part (half!) of the

overall project grade. So you need to fix any remaining bugs, from semantics/type

checking all the way back to the scanner! (And your final evaluation will reflect these fixes)

● Project report due Tuesday, 06/03 at 11:59 pm (no late days)

● HW4 due Thursday, 06/05 at 11:59 pm (late days allowed)

Review of Optimizations

Front End Back End
Target
Code

Source
Code

IR

Scanner Parser
Semantic
Analysis

Code
Generation

Optimization

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

A Basic Block

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

A Basic Block

A Function/Method

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

A Basic Block

A Function/Method

A Program

Overview of Dataflow Analysis

IR
Dataflow
Analysis

Optimization

- A framework for exposing properties about programs

- Operates using sets of “facts”

Overview of Dataflow Analysis

IR
Dataflow
Analysis

Optimization

- A framework for exposing properties about programs

- Operates using sets of “facts”

- Just the initial discovery phase

- Optimizations can then be made based on the analysis

Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):

- IN(b): facts true on entry to b

- OUT(b): facts true on exit from b

- GEN(b): facts created (and not killed) in b

- KILL(b): facts killed in b

Overview of Dataflow Analysis (continued)

• These are related by the equation

● OUT(b) = GEN(b)  (IN(b) – KILL(b))
● Solve this iteratively for all blocks

● Sometimes information propagates forward; sometimes

backward

● But will reach correct solution (fixed point) regardless of

order in which blocks are considered

Reaching Definitions (A Dataflow Problem)

“What definitions of each variable might reach this point”

- Could be used for:

- Constant Propagation

- Uninitialized Variables

int x;

if (y > 0) {
x = y;

} else {
x = 0;

}

System.out.println(x);“x=y”, “x=0”

Reaching Definitions (A Dataflow Problem)

“What definitions of each variable might reach this point”

- Be careful: Does not involve the

value of the variable definition

- The dataflow problem

“Available Expressions”

is designed for that

int x;

if (y > 0) {
x = y;

} else {
x = 0;

}

y = -1;
System.out.println(x);still: “x=y”, “x=0”

Equations for Reaching Definitions

- IN(b): the definitions reaching upon entering block b

- OUT(b): the definitions reaching upon exiting block b

- GEN(b): the definitions assigned and not killed in block b

- KILL(b): the definitions of variables overwritten in block b

IN(b) = ⋃p∈pred(b)OUT(p)

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))

Problems 1(a) and 1(b)

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3

L4

L5

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Note: Labels are used in place of actual

definitions to save space!

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3 L0

L4

L5

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1 L0

L2 L2 L0, L1

L3 L3 L0 L0, L1, L2

L4 L1, L2, L3

L5 L1, L2, L3

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0

L1 L1 L0 L0, L1

L2 L2 L0, L1 L0, L1, L2

L3 L3 L0 L0, L1, L2 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Is it possible to replace the use of a in block L1with the
constant 0?

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

Is it possible to replace the use of a in block L1with the
constant 0?

No. To determine this, we would look at the IN set for block L1 -- the fact that the IN set
contains two definitions of ‘a’ (L0 and L3) means we cannot perform this constant
propagation. In other words, more than one definition of ‘a’ is a reaching definition to
block L1, and therefore performing constant propagation would only preserve one
possible value of ‘a’ and the generated code would not be equivalent.

Phi-Functions

● A way to represent multiple possible values for a certain definition
○ Not a “real” instruction – just a form of bookkeeping needed for SSA

○ Every variable gets a subscript

Original CFG SSA Form

Phi-Functions

● Wherever a variable has multiple possible definitions entering a block
○ Inefficient (and unnecessary!) to consider all possible phi-functions at the start of each block

Original CFG SSA Form

Example With a Loop

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original

a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2

a2 := b2 * 2
if a2 < N

return c1

SSA
Notes:
•Loop-back edges are
also merge points, so
require Φ-functions
•a0, b0, c0 are initial
values of a, b, c on
entry to initial block
•b1 is dead – can
delete later
•c is live on entry –
either input parameter
or uninitialized

Problem 2(a)

0

21

43

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0

1

2

3

4

5

6

6

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0

1

2

3

4

5

6

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6

1

2

3

4

5

6

A node X dominates a node Y iff every path from the entry point of
the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y

Need to go through 0 to get through 1, 2, 3, 4, 5, 6 and 0 cannot
strictly dominate itself

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1

2

3

4

5

6

A node Y is in the dominance frontier of node X iff X dominates an
immediate predecessor of Y but X does not strictly dominate Y .
A node 0 is in the dominance frontier of node 0 iff 0 dominates an
immediate predecessor (6) of 0 but 0 does not strictly dominate 0

0 dominates 6, 6 is an immediate predecessor of 0, 0 does not
strictly dominate 0

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1

2

3

4

5

6

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅

2

3

4

5

6

A node X dominates a node Y iff every path from the entry point of
the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y

1 does not dominate 6 because there is a path from 5 that doesn’t
include 1. 1 does not strictly dominate itself

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2

3

4

5

6

A node Y is in the dominance frontier of node X iff X dominates an
immediate predecessor of Y but X does not strictly dominate Y .

X = 1, Y = 6, 1 dominates 1, 1 is an immediate predecessor of 6, 1
does not strictly dominate 6
X = 1, Y = 1, 1 dominates 1, 1 is an immediate predecessor of 1, 1
does not strictly dominate 1

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2

3

4

5

6

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2 3, 4, 5

3

4

5

6

A node X dominates a node Y iff every path from the entry point
of the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y

Need to go through 2 to get through 3, 4, 5 and 2 cannot strictly
dominate itself

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2 3, 4, 5 6

3

4

5

6

A node Y is in the dominance frontier of node X iff X dominates an
immediate predecessor of Y but X does not strictly dominate Y .

X = 2, Y = 6, 2 dominates 5, 5 is an immediate predecessor of 6, 2
does not strictly dominate 6

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4

5

6

3 does not strictly dominate 5 (path through 4) and therefore does
not strictly dominate anything else

3 dominates 3, 3 is an immediate predecessor of 5, 3 does not
strictly dominate 5

0

21

43

5

6

Same as previous slide but with 4 instead of 3

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5

6

0

21

43

5

6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6

5 does not strictly dominate 6 (path through 1) and therefore does
not strictly dominate anything else

5 dominates 5, 5 is an immediate predecessor of 6, 5 does not
strictly dominate 6

0

21

43

5

6

6 does not strictly dominate 0 (path through 0) and therefore does
not strictly dominate anything else

6 dominates 6, 6 is an immediate predecessor of 0, 6 does not
strictly dominate 0

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Problem 2(b)

Converting to SSA

Compute the dominance

frontier of each node
1

2

3

Determine which variables

need merging in each node

Assign numbers to definitions

and add phi functions

Already done (in problem 2a)

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0
1, 2, 3,

4, 5, 6
0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 1: Dominance Frontiers
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

Converting to SSA

Compute the dominance

frontier of each node
1

2

3

Determine which variables

need merging in each node

Assign numbers to definitions

and add phi functions

We will compute using the

dominance frontiers

Need to merge:
c,b

NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 1: Each node in the dominance frontier of
node X will merge any definitions created in node X.

Need to merge:
a,d

Need to merge:
c

Need to merge:
d,e

a,d

c

b

d,e

d

c

d

a,d

c c b

d,e
d

c

d

NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 2: Each merge will create a new
definition, which may need merging again.

Need to merge:
a,d,b,c

Need to merge:
c,b,d,e

Need to merge:
c

Need to merge:
d,e

d,e

b,c

NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 3: Each merge will create a new
definition, which may need merging again.

Need to merge:
a,d,b,c,e

Need to merge:
c,b,d,e

Need to merge:
c

Need to merge:
d,e

d,e

Converting to SSA

Compute the dominance

frontier of each node
1

2

3

Determine which variables

need merging in each node

Assign numbers to definitions

and add phi functions

Place phi functions first,

then increment subscripts

a = c + 2

d = a + b
B0

Need to merge:
a,b,c,d,e

a1 = Φ(a0, a2)

b1 = Φ(b0, b3)

c1 = Φ(c0, c5)

d1 = Φ(d0, d7)

e1 = Φ(e0, e4)

a2 = c1 + 2

d2 = a2 + b1

B0

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

Note: these subscripts determined
after doing the rest of the CFG!

c2 = Φ(c1, c3)

c3 = b1 - d2
B1 c = b - d B1

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

Need to merge:
c

Note: must merge its own (later)
definition because of the back-edge!

b2 = a2 + c1B2

Nothing to merge

b = a + c B2

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

d3 = b2 * 2

e2 = 2 * 2B3

Nothing to merge

d = b * 2

e = 2 * 2 B3

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

B4

Nothing to merge

d = b + 1 B4
d4 = b2 + 1

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

B5 c = d >> 4 B5

d5 = Φ(d3, d4)

e3 = Φ(e1, e2)

c4 = d5 >> 4

Need to merge:
d,e

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

B6 d = c + b B6

b3 = Φ(b1, b2)

c5 = Φ(c3, c4)

d6 = Φ(d2, d5)

e4 = Φ(e1, e3)

d7 = c5 + b3
Need to merge:
b,c,d,e

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a
variable should increment its index by 1.

a1 = Φ(a0, a2)

b1 = Φ(b0, b3)

c1 = Φ(c0, c5)

d1 = Φ(d0, d7)

e1 = Φ(e0, e4)

a2 = c1 + 2

d2 = a2 + b1

c2 = Φ(c1, c3)

c3 = b1 - d2

b2 = a2 + c1

d3 = b2 * 2

e2 = 2 * 2

d4 = b2 + 1

d5 = Φ(d3, d4)

e3 = Φ(e1, e2)

c4 = d5 >> 4

b3 = Φ(b1, b2)

c5 = Φ(c3, c4)

d6 = Φ(d2, d5)

e4 = Φ(e1, e3)

d7 = c5 + b3

B0

B1
B2

B3
B4

B5

B6

Solution

	Slide 1: Dataflow Analysis + SSA CSE 401 Sections
	Slide 2: Announcements📢
	Slide 3: Review of Optimizations
	Slide 4: Review of Optimizations
	Slide 5: Review of Optimizations
	Slide 6: Review of Optimizations
	Slide 7: Review of Optimizations
	Slide 8: Overview of Dataflow Analysis
	Slide 9: Overview of Dataflow Analysis
	Slide 10: Overview of Dataflow Analysis
	Slide 11: Overview of Dataflow Analysis (continued)
	Slide 12: Reaching Definitions (A Dataflow Problem)
	Slide 13: Reaching Definitions (A Dataflow Problem)
	Slide 14: Equations for Reaching Definitions
	Slide 16: Problems 1(a) and 1(b)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Convergence!
	Slide 23
	Slide 24
	Slide 25: Phi-Functions
	Slide 26: Phi-Functions
	Slide 27: Example With a Loop
	Slide 28: Problem 2(a)
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Problem 2(b)
	Slide 44: Converting to SSA
	Slide 45
	Slide 46: Converting to SSA
	Slide 47
	Slide 49
	Slide 50
	Slide 51: Converting to SSA
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Solution

