
Dataflow Analysis + SSA
CSE 401 Sections



Announcements

● Codegen deadline – TONIGHT 11:59 pm.  Remember to commit/push/tag 

and complete the Gradescope submission. If using late days, may submit at 

most two days late (depending on number of remaining late days).

➢ Once codegen is finished, we’ll do an overall evaluation of your compiler, all phases, and 

rerun a comprehensive set of tests.  This final evaluation is the major part (half!) of the 

overall project grade.  So you need to fix any remaining bugs, from semantics/type 

checking all the way back to the scanner! (And your final evaluation will reflect these fixes) 

● Project report due Tuesday, 06/03 at 11:59 pm (no late days)

● HW4 due Thursday, 06/05 at 11:59 pm (late days allowed)
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Overview of Dataflow Analysis

IR
Dataflow 
Analysis

Optimization

- A framework for exposing properties about programs

- Operates using sets of “facts”

- Just the initial discovery phase

- Optimizations can then be made based on the analysis



Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):

- IN(b): facts true on entry to b

- OUT(b): facts true on exit from b

- GEN(b): facts created (and not killed) in b

- KILL(b): facts killed in b



Overview of Dataflow Analysis (continued)

• These are related by the equation

● OUT(b) = GEN(b)  (IN(b) – KILL(b))
● Solve this iteratively for all blocks

● Sometimes information propagates forward; sometimes 

backward

● But will reach correct solution (fixed point) regardless of 

order in which blocks are considered



Reaching Definitions (A Dataflow Problem)

“What definitions of each variable might reach this point”

- Could be used for:

- Constant Propagation

- Uninitialized Variables

int x;

if (y > 0) {
x = y;

} else {
x = 0;

}

System.out.println(x);“x=y”, “x=0”



Reaching Definitions (A Dataflow Problem)

“What definitions of each variable might reach this point”

- Be careful: Does not involve the

value of the variable definition

- The dataflow problem

“Available Expressions”

is designed for that

int x;

if (y > 0) {
x = y;

} else {
x = 0;

}

y = -1;
System.out.println(x);still: “x=y”, “x=0”



Equations for Reaching Definitions

- IN(b): the definitions reaching upon entering block b

- OUT(b): the definitions reaching upon exiting block b

- GEN(b): the definitions assigned and not killed in block b

- KILL(b): the definitions of variables overwritten in block b

IN(b) = ⋃p∈pred(b)OUT(p)

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))



Problems 1(a) and 1(b)



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3

L4

L5

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c

Note: Labels are used in place of actual 

definitions to save space!



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3 L0

L4

L5

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1 L0

L2 L2 L0, L1

L3 L3 L0 L0, L1, L2

L4 L1, L2, L3

L5 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0

L1 L1 L0 L0, L1

L2 L2 L0, L1 L0, L1, L2

L3 L3 L0 L0, L1, L2 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c

Is it possible to replace the use of a in block L1with the 
constant 0?



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c

Is it possible to replace the use of a in block L1with the 
constant 0?

No. To determine this, we would look at the IN set for block L1 -- the fact that the IN set 
contains two definitions of ‘a’ (L0 and L3) means we cannot perform this constant 
propagation. In other words, more than one definition of ‘a’ is a reaching definition to 
block L1, and therefore performing constant propagation would only preserve one 
possible value of ‘a’ and the generated code would not be equivalent.



Phi-Functions

● A way to represent multiple possible values for a certain definition
○ Not a “real” instruction – just a form of bookkeeping needed for SSA

○ Every variable gets a subscript

Original CFG SSA Form



Phi-Functions

● Wherever a variable has multiple possible definitions entering a block
○ Inefficient (and unnecessary!) to consider all possible phi-functions at the start of each block

Original CFG SSA Form



Example With a Loop

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original

a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2

a2 := b2 * 2
if a2 < N

return c1

SSA
Notes:
•Loop-back edges are
also merge points, so
require Φ-functions
•a0, b0, c0 are initial
values of a, b, c on
entry to initial block
•b1 is dead – can
delete later
•c is live on entry –
either input parameter
or uninitialized



Problem 2(a)
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6

1

2

3

4

5

6

A node X dominates a node Y iff every path from the entry point of 
the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y

Need to go through 0 to get through 1, 2, 3, 4, 5, 6 and 0 cannot 
strictly dominate itself
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1
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A node Y is in the dominance frontier of node X iff X dominates an 
immediate predecessor of Y but X does not strictly dominate Y .
A node 0 is in the dominance frontier of node 0 iff 0 dominates an 
immediate predecessor (6) of 0 but 0 does not strictly dominate 0

0 dominates 6, 6 is an immediate predecessor of 0, 0 does not 
strictly dominate 0
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅

2
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5

6

A node X dominates a node Y iff every path from the entry point of 
the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y

1 does not dominate 6 because there is a path from 5 that doesn’t 
include 1. 1 does not strictly dominate itself
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2

3
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6

A node Y is in the dominance frontier of node X iff X dominates an 
immediate predecessor of Y but X does not strictly dominate Y .

X = 1, Y = 6, 1 dominates 1, 1 is an immediate predecessor of 6, 1 
does not strictly dominate 6
X = 1, Y = 1, 1 dominates 1, 1 is an immediate predecessor of 1, 1 
does not strictly dominate 1
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5

3

4

5

6

A node X dominates a node Y iff every path from the entry point 
of the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y

Need to go through 2 to get through 3, 4, 5 and 2 cannot strictly 
dominate itself
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3

4

5

6

A node Y is in the dominance frontier of node X iff X dominates an 
immediate predecessor of Y but X does not strictly dominate Y .

X = 2, Y = 6, 2 dominates 5, 5 is an immediate predecessor of 6, 2 
does not strictly dominate 6
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4

5

6

3 does not strictly dominate 5 (path through 4) and therefore does 
not strictly dominate anything else

3 dominates 3, 3 is an immediate predecessor of 5, 3 does not 
strictly dominate 5
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6
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3 ∅ 5
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6

5 does not strictly dominate 6 (path through 1) and therefore does 
not strictly dominate anything else

5 dominates 5, 5 is an immediate predecessor of 6, 5 does not 
strictly dominate 6
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6 does not strictly dominate 0 (path through 0) and therefore does 
not strictly dominate anything else

6 dominates 6, 6 is an immediate predecessor of 0, 6 does not 
strictly dominate 0

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0



Problem 2(b)



Converting to SSA

Compute the dominance 

frontier of each node
1

2

3

Determine which variables 

need merging in each node

Assign numbers to definitions 

and add phi functions

Already done (in problem 2a)



NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0
1, 2, 3,

4, 5, 6
0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 1: Dominance Frontiers
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6



Converting to SSA

Compute the dominance 

frontier of each node
1

2

3

Determine which variables 

need merging in each node

Assign numbers to definitions 

and add phi functions

We will compute using the 

dominance frontiers



Need to merge:
c,b

NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 1: Each node in the dominance frontier of 
node X will merge any definitions created in node X.

Need to merge:
a,d

Need to merge:
c

Need to merge:
d,e

a,d

c

b

d,e

d

c

d

a,d

c c b

d,e
d

c

d



NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 2: Each merge will create a new 
definition, which may need merging again.

Need to merge:
a,d,b,c

Need to merge:
c,b,d,e

Need to merge:
c

Need to merge:
d,e

d,e

b,c



NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2

d = a + b

c = b - d b = a + c

d = b * 2

e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 3: Each merge will create a new 
definition, which may need merging again.

Need to merge:
a,d,b,c,e

Need to merge:
c,b,d,e

Need to merge:
c

Need to merge:
d,e

d,e



Converting to SSA

Compute the dominance 

frontier of each node
1

2

3

Determine which variables 

need merging in each node

Assign numbers to definitions 

and add phi functions

Place phi functions first,

then increment subscripts



a = c + 2

d = a + b
B0

Need to merge:
a,b,c,d,e

a1 = Φ(a0, a2)

b1 = Φ(b0, b3)

c1 = Φ(c0, c5)

d1 = Φ(d0, d7)

e1 = Φ(e0, e4)

a2 = c1 + 2

d2 = a2 + b1

B0

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.

Note: these subscripts determined 
after doing the rest of the CFG!



c2 = Φ(c1, c3)

c3 = b1 - d2
B1 c = b - d B1

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.

Need to merge:
c

Note: must merge its own (later) 
definition because of the back-edge!



b2 = a2 + c1B2

Nothing to merge

b = a + c B2

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.



d3 = b2 * 2

e2 = 2 * 2B3

Nothing to merge

d = b * 2

e = 2 * 2 B3

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.



B4

Nothing to merge

d = b + 1 B4
d4 = b2 + 1

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.



B5 c = d >> 4 B5

d5 = Φ(d3, d4)

e3 = Φ(e1, e2)

c4 = d5 >> 4

Need to merge:
d,e

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.



B6 d = c + b B6

b3 = Φ(b1, b2)

c5 = Φ(c3, c4)

d6 = Φ(d2, d5)

e4 = Φ(e1, e3)

d7 = c5 + b3
Need to merge:
b,c,d,e

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a 
variable should increment its index by 1.



a1 = Φ(a0, a2)

b1 = Φ(b0, b3)

c1 = Φ(c0, c5)

d1 = Φ(d0, d7)

e1 = Φ(e0, e4)

a2 = c1 + 2

d2 = a2 + b1

c2 = Φ(c1, c3)

c3 = b1 - d2

b2 = a2 + c1

d3 = b2 * 2

e2 = 2 * 2

d4 = b2 + 1

d5 = Φ(d3, d4)

e3 = Φ(e1, e2)

c4 = d5 >> 4

b3 = Φ(b1, b2)

c5 = Φ(c3, c4)

d6 = Φ(d2, d5)

e4 = Φ(e1, e3)

d7 = c5 + b3

B0

B1
B2

B3
B4

B5

B6

Solution
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