CSE 401/M501 — Compilers

x86-64, Running Minilava,
Basic Code Generation and Bootstrapping
CSE 401/M501 staff — Section Slides
Spring 2025

UW CSE 401/M501 Spring 2025

Generating .asm Code

« Suggestion: isolate the actual compiler output
operations in a handful of routines

— Usual modularity reasons & saves some typing

— Some possibilities

// write code string s to .asm output
void gen (String s) { ... }
// write "op src,dst" to .asm output

vold genbin(String op, String src, String dst) {...

// write label 1bl to .asm output as "lbl:"
vold genLabel (String 1lbl) { ... }

— A handful of these methods should do it

UW CSE 401/M501 Spring 2025

A Simple Code Generation Strategy

e Goal: quick ‘n dirty correct code; “optimize” later if
time

o Traverse AST primarily in execution order and emit
code during the traversal

— Codegen visitor might want to traverse the tree in ad-hoc
ways depending on sequence that parts need to appear
in the asm code

o Treat the x86-64 as a 1-register machine with a
stack to hold additional intermediate values(!)

— Ugly code, but will work — better later if there’s time

UW CSE 401/M501 Spring 2025 3

(The?) Simplifying Assumption

« Store all values (reference, int, boolean) in 64-bit
quadwords

— Natural size for 64-bit pointers, i.e., object
references (variables of class types)
— C’s “long” size for integers

« Useint64 toruint64 tinanyCcode thatinteracts
with MiniJava generated code to guarantee size (declared

in<stdint.c>)

e This can produce different results from Java ints in edge
cases, mostly involving overflow. We’ll ignore.

UW CSE 401/M501 Spring 2025

Before Codegen Visitor Pass...

 Need an initial pass through class and method
symbol tables to assign locations to variables

— Method local variables: successive offsets in the stack
frame relative to $rbp (-8, -16, ...)

« Also for parameters — allocate space to store copies in stack
frame when needed (or always, to keep things simple)

— Object instance variables: successive offsets from the
start of the object (+0 is vtable pointer, instance variables
at +8, +16, ...)

« This will also compute the size of each stack frame
and object which is needed later

« Also assign vtable offsets for method pointers in
this initial pass

UW CSE 401/M501 Spring 2025 5

X86 as a Stack Machine

e |dea: Use x86-64 stack for expression evaluation with
$rax as the logical “top” of the stack (initially empty)

e |nvariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the
result in $rax

« |f avalue needs to be preserved while another expression

is evaluated, push $rax, evaluate, then pop when first
value is needed

— Remember: always pop what you push
— Will produce lots of redundant, but correct, code

« Examples below follow code shape examples, but with
more details about code generation

UW CSE 401/M501 Spring 2025

Example: Generate Code for Constants
and Identifiers

Integer constants, say 1/

gen(movg S17,%rax)
e leaves value in %rax

Local variables (any type — int, bool, reference)
gen(movq varoffset(%rbp),%rax)

Instance variables (“this.var”)

gen(movq varoffset(%rdi),%rax)

e (assumes %rdi still contains unaltered “this” ptr; use different
register or saved copy if %rdi has changed)

UW CSE 401/M501 Spring 2025

Example: Generate Code for expl + exp2

Visit expl

— generates code to evaluate expl with result in %rax
gen(pushq %rax)

— push expl onto stack
Visit exp2

— generates code for exp2; result in %rax
gen(popg %rdx)

— pop left argument into %rdx; cleans up stack
gen(addg %rdx,%rax)

— perform the addition; result in %rax

« Note: Java requires operands must be evaluated left to right. Makes a
difference if some operand has side effects (method call with read/
write, change global variable, etc.). Be sure to do that.

UW CSE 401/M501 Spring 2025 8

Example: var = exp; (1)

Assuming that var is a local variable

Visit node for exp

« Generates code to eval exp and leave result in %rax

gen(movq %rax,offset_of variable(%rbp))

Similar code if var is part of an object, but use
pointer to the object instead of %rbp

UW CSE 401/M501 Spring 2025

Example: var = exp; (2)

If var is a more complex expression (object
instance variable or array element, for example)

visit var
gen(pushq %rax)

« push lvalue (address) of variable or object containing
variable onto stack

Visit exp
« leaves rhs value in %rax
gen(popq %rdx)
gen(movq %rax,appropriate_offset(%rdx))

UW CSE 401/M501 Spring 2025 10

Example: call obj.f(el,e2,...en)

In principal the code should work like this:
Visit obj
 leaves reference to object in %rax
gen(movqg %rax,%rdi)
e “this” pointer is first argument
Visit el, e2, ..., en. For each argument,
e gen(movqg %rax,%correct_argument_register)

generate code to load method table pointer located at
0(%rdi) into some register, probably %rax

generate call instruction with indirect jump

UW CSE 401/M501 Spring 2025

11

Method Call Complications

« Big one: code to evaluate any argument might clobber
argument registers (i.e., computing an argument value
might require a method call)

— Possible strategy to cope on next slides, but feel free to do
something better

« And more: clobbers current method’s %rdi (this ptr)
— Save it on method entry; reload after call (or on every use)

« Other one: what if a method has too many parameters?

— OK for CSE 401/M501 to assume all methods have <5
parameters plus “this” — do better if you want

UW CSE 401/M501 Spring 2025

12

Method Calls in Parameters

e Suggestion to avoid trouble:

— Evaluate parameters in order left to right, and push
them on the stack as each one evaluated

o Left to right ordering required by Java language
specification

— Right before the call instruction, pop the
parameters into the correct registers

e But....

UW CSE 401/M501 Spring 2025 13

Stack Alignment (1)

while an odd number of parameter values are pushed
on the stack!

— (violates 16-byte %rsp alignment on method call...)
« We have a similar problem if an odd number of

intermediate values are pushed on the stack when we
call a method while evaluating an expression

— (We might get away with it if it only involves calls to our own
generated, not library, code, but it would be wrong* to do
that)

*i.e., might “work”, but it’s not the right way to solve the problem

UW CSE 401/M501 Spring 2025

Above tdea hack works provided we don’t call a method

14

Stack Alignment (2)

« Workable solution: keep a counter in the code
generator of how much has been pushed on the
stack. If needed, emit extra gen(pushq %rax) (or
some other register) to push a useless value and
align the stack before generating a call instruction

— Be sure to pop it after!!
« Another (cleaner, but more work) solution: make

stack frame big enough and use movq instead of
pushqg to store arguments and temporaries

— Needs extra bookkeeping to keep track of how much to
allocate for stack frame and how temps are used and
where they are in the frame

UW CSE 401/M501 Spring 2025 15

Sigh...

« Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a

faney decent register allocator

e Feel free to do better than this sim
pop scheme — but remember, simp

ole push/
e and

works wins over fancy and not finis
broken

UW CSE 401/M501 Spring 2025

ned or

16

Code Gen for Method Definitions

e Generate label for method

ClasshameSmethodname:

« Generate method prologue

push %rbp, copy %rsp to %rbp, subtract frame size
(multiple of 16) from %rsp

e Visit statements in order

— Method epilogue is normally generated as part of a
return statement (details shortly)

— In MinilJava the return is generated after visiting
the rest of the method body to generate its code

UW CSE 401/M501 Spring 2025 17

Registers again...

« Method parameters are in registers

e But code generated for methods also will be using
registers, even if there are no calls to other
methods

« So how do we avoid clobbering parameters?

« Suggestion: Allocate space in the stack frame and
save copies of all parameter registers on method
entry. Use those copies as local variables when you
need to reference a parameter.

UW CSE 401/M501 Spring 2025 18

Example: return exp;

« Visit exp; this leaves result in %rax where it
should be

« Generate method epilogue (copy %rbp to
%rsp, pop %rbp) to unwind the stack frame;
follow with ret instruction
— Can use leave instead of movqg/popq to unwind the

stack, but the separate instructions might be a
little easier to trace/debug if something isn’t right

UW CSE 401/M501 Spring 2025 19

Control Flow: Unique Labels

« Needed in code generator: a String-valued
method that returns a different label each time
it is called (e.g., L1, L2, L3, ...)

— Improvement: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)

o (whilel, while2, while3, ...; if1, if2, ...; elsel, else2, ...;
endifl, endif2,)

UW CSE 401/M501 Spring 2025 20

Control Flow: Tests

« Recall that the context for compiling a boolean
expression is:
— Label or address of jump target
— Whether to jump if true or false

« So the visitor for a boolean expression should
receive this information from the parent node

visitor

UW CSE 401/M501 Spring 2025

21

Example: while(exp) body

« Assuming we want the test at the bottom of
the generated loop...

gen(jmp testLabel)
gen(bodylLabel:)

visit body
gen(testLabel:)

visit exp (condition) with target=bodyLabel and
sense="“jump if true”

UW CSE 401/M501 Spring 2025 22

Example: expl < exp2

« Similar to other binary operators

o Difference: surrounding (parent) context is a target
label and whether to jump if true or false

« Code
visit expl
gen(pushqg %rax)
visit exp2
gen(popqg %rdx)
gen(cmpqg %rdx,%rax)

gen(condjump targetlLabel)
« appropriate conditional jump depending on sense of test

UW CSE 401/M501 Spring 2025

23

Boolean Operators

&& (and || if you add it)

— Create label(s) needed to skip around the parts of
the expression

— Generate subexpressions with appropriate target
labels and conditions

lexp

— Generate exp with same target label, but reverse
the sense of the condition

UW CSE 401/M501 Spring 2025

24

Reality check

e Lots of projects in the past have evaluated all
booleans to get 1 or O, then tested that value
for control flow

e Would be nice to do better (as above), but
“simple and works...”

e (And we need to be able to generate the 0/1
anyway for storable boolean expressions)

UW CSE 401/M501 Spring 2025

25

Join Points

Loops and conditional statements have join points where
execution paths merge

Generated code must ensure that machine state will be
consistent regardless of which path is taken to get there

— i.e., the paths through an if-else statement must not leave a
different number of values pushed onto the stack

— If we want a particular value in a particular register at a join point,
both paths must put it there, or we need to generate additional
code to move the value to the correct register

With our simple 1-accumulator model of code generation, this
should usually be true without needing extra work; with better
use of registers it becomes a bigger issue

— With more registers, would need to be sure they are used
consistently at join point regardless of how we get there

UW CSE 401/M501 Spring 2025 26

