
UW CSE 401/M501 Spring 2025

CSE 401/M501 – Compilers

x86-64, Running MiniJava,
Basic Code Generation and Bootstrapping

CSE 401/M501 staff – Section Slides
Spring 2025

1

UW CSE 401/M501 Spring 2025

Generating .asm Code

• Suggestion: isolate the actual compiler output
operations in a handful of routines
– Usual modularity reasons & saves some typing
– Some possibilities

// write code string s to .asm output
void gen(String s) { ... }
// write "op src,dst" to .asm output
void genbin(String op, String src, String dst) {...}
// write label lbl to .asm output as "lbl:"
void genLabel(String lbl) { ... }

– A handful of these methods should do it

2

UW CSE 401/M501 Spring 2025

A Simple Code Generation Strategy

• Goal: quick ‘n dirty correct code; “optimize” later if
time

• Traverse AST primarily in execution order and emit
code during the traversal
– Codegen visitor might want to traverse the tree in ad-hoc

ways depending on sequence that parts need to appear
in the asm code

• Treat the x86-64 as a 1-register machine with a
stack to hold additional intermediate values(!)
– Ugly code, but will work – better later if there’s time

3

UW CSE 401/M501 Spring 2025

(The?) Simplifying Assumption

• Store all values (reference, int, boolean) in 64-bit
quadwords
– Natural size for 64-bit pointers, i.e., object

references (variables of class types)
– C’s “long” size for integers

• Use int64_t or uint64_t in any C code that interacts
with MiniJava generated code to guarantee size (declared
in <stdint.c>)

• This can produce different results from Java ints in edge
cases, mostly involving overflow. We’ll ignore.

4

UW CSE 401/M501 Spring 2025

Before Codegen Visitor Pass…
• Need an initial pass through class and method

symbol tables to assign locations to variables
– Method local variables: successive offsets in the stack

frame relative to %rbp (-8, -16, …)
• Also for parameters – allocate space to store copies in stack

frame when needed (or always, to keep things simple)
– Object instance variables: successive offsets from the

start of the object (+0 is vtable pointer, instance variables
at +8, +16, …)

• This will also compute the size of each stack frame
and object which is needed later

• Also assign vtable offsets for method pointers in
this initial pass

5

UW CSE 401/M501 Spring 2025

x86 as a Stack Machine

• Idea: Use x86-64 stack for expression evaluation with
%rax as the logical “top” of the stack (initially empty)

• Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the
result in %rax

• If a value needs to be preserved while another expression
is evaluated, push %rax, evaluate, then pop when first
value is needed
– Remember: always pop what you push
– Will produce lots of redundant, but correct, code

• Examples below follow code shape examples, but with
more details about code generation

6

UW CSE 401/M501 Spring 2025

Example: Generate Code for Constants
and Identifiers
Integer constants, say 17

 gen(movq $17,%rax)
• leaves value in %rax

Local variables (any type – int, bool, reference)
 gen(movq varoffset(%rbp),%rax)

Instance variables (“this.var”)
 gen(movq varoffset(%rdi),%rax)

• (assumes %rdi still contains unaltered “this” ptr; use different
register or saved copy if %rdi has changed)

7

UW CSE 401/M501 Spring 2025

Example: Generate Code for exp1 + exp2

Visit exp1
– generates code to evaluate exp1 with result in %rax

gen(pushq %rax)
– push exp1 onto stack

Visit exp2
– generates code for exp2; result in %rax

gen(popq %rdx)
– pop left argument into %rdx; cleans up stack

gen(addq %rdx,%rax)
– perform the addition; result in %rax

• Note: Java requires operands must be evaluated left to right. Makes a
difference if some operand has side effects (method call with read/
write, change global variable, etc.). Be sure to do that.

8

UW CSE 401/M501 Spring 2025

Example: var = exp; (1)

Assuming that var is a local variable
Visit node for exp
• Generates code to eval exp and leave result in %rax

gen(movq %rax,offset_of_variable(%rbp))

Similar code if var is part of an object, but use
pointer to the object instead of %rbp

9

UW CSE 401/M501 Spring 2025

Example: var = exp; (2)

If var is a more complex expression (object
instance variable or array element, for example)

visit var
gen(pushq %rax)
• push lvalue (address) of variable or object containing

variable onto stack
visit exp
• leaves rhs value in %rax

gen(popq %rdx)
gen(movq %rax,appropriate_offset(%rdx))

10

UW CSE 401/M501 Spring 2025

Example: call obj.f(e1,e2,…en)

In principal the code should work like this:
Visit obj

• leaves reference to object in %rax
gen(movq %rax,%rdi)

• “this” pointer is first argument
Visit e1, e2, …, en. For each argument,

• gen(movq %rax,%correct_argument_register)
generate code to load method table pointer located at
0(%rdi) into some register, probably %rax
generate call instruction with indirect jump

11

UW CSE 401/M501 Spring 2025

Method Call Complications

• Big one: code to evaluate any argument might clobber
argument registers (i.e., computing an argument value
might require a method call)
– Possible strategy to cope on next slides, but feel free to do

something better

• And more: clobbers current method’s %rdi (this ptr)
– Save it on method entry; reload after call (or on every use)

• Other one: what if a method has too many parameters?
– OK for CSE 401/M501 to assume all methods have ≤ 5

parameters plus “this” – do better if you want

12

UW CSE 401/M501 Spring 2025

Method Calls in Parameters

• Suggestion to avoid trouble:
– Evaluate parameters in order left to right, and push

them on the stack as each one evaluated
• Left to right ordering required by Java language

specification

– Right before the call instruction, pop the
parameters into the correct registers

• But….

13

UW CSE 401/M501 Spring 2025

Stack Alignment (1)

• Above idea hack works provided we don’t call a method
while an odd number of parameter values are pushed
on the stack!
– (violates 16-byte %rsp alignment on method call…)

• We have a similar problem if an odd number of
intermediate values are pushed on the stack when we
call a method while evaluating an expression
– (We might get away with it if it only involves calls to our own

generated, not library, code, but it would be wrong* to do
that)
 *i.e., might “work”, but it’s not the right way to solve the problem

14

UW CSE 401/M501 Spring 2025

Stack Alignment (2)

• Workable solution: keep a counter in the code
generator of how much has been pushed on the
stack. If needed, emit extra gen(pushq %rax) (or
some other register) to push a useless value and
align the stack before generating a call instruction
– Be sure to pop it after!!

• Another (cleaner, but more work) solution: make
stack frame big enough and use movq instead of
pushq to store arguments and temporaries
– Needs extra bookkeeping to keep track of how much to

allocate for stack frame and how temps are used and
where they are in the frame

15

UW CSE 401/M501 Spring 2025

Sigh…

• Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a
fancy decent register allocator

• Feel free to do better than this simple push/
pop scheme – but remember, simple and
works wins over fancy and not finished or
broken

16

UW CSE 401/M501 Spring 2025

Code Gen for Method Definitions

• Generate label for method
Classname$methodname:

• Generate method prologue
push %rbp, copy %rsp to %rbp, subtract frame size
(multiple of 16) from %rsp

• Visit statements in order
– Method epilogue is normally generated as part of a

return statement (details shortly)
– In MiniJava the return is generated after visiting

the rest of the method body to generate its code

17

UW CSE 401/M501 Spring 2025

Registers again…

• Method parameters are in registers
• But code generated for methods also will be using

registers, even if there are no calls to other
methods

• So how do we avoid clobbering parameters?
• Suggestion: Allocate space in the stack frame and

save copies of all parameter registers on method
entry. Use those copies as local variables when you
need to reference a parameter.

18

UW CSE 401/M501 Spring 2025

Example: return exp;

• Visit exp; this leaves result in %rax where it
should be

• Generate method epilogue (copy %rbp to
%rsp, pop %rbp) to unwind the stack frame;
follow with ret instruction
– Can use leave instead of movq/popq to unwind the

stack, but the separate instructions might be a
little easier to trace/debug if something isn’t right

19

UW CSE 401/M501 Spring 2025

Control Flow: Unique Labels

• Needed in code generator: a String-valued
method that returns a different label each time
it is called (e.g., L1, L2, L3, …)

– Improvement: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)
• (while1, while2, while3, …; if1, if2, …; else1, else2, …;

endif1, endif2, … .)

20

UW CSE 401/M501 Spring 2025

Control Flow: Tests

• Recall that the context for compiling a boolean
expression is:
– Label or address of jump target
– Whether to jump if true or false

• So the visitor for a boolean expression should
receive this information from the parent node
visitor

21

UW CSE 401/M501 Spring 2025

Example: while(exp) body

• Assuming we want the test at the bottom of
the generated loop…
gen(jmp testLabel)
gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp (condition) with target=bodyLabel and
sense=“jump if true”

22

UW CSE 401/M501 Spring 2025

Example: exp1 < exp2

• Similar to other binary operators
• Difference: surrounding (parent) context is a target

label and whether to jump if true or false
• Code

visit exp1
gen(pushq %rax)
visit exp2
gen(popq %rdx)
gen(cmpq %rdx,%rax)
gen(condjump targetLabel)

• appropriate conditional jump depending on sense of test

23

UW CSE 401/M501 Spring 2025

Boolean Operators

&& (and || if you add it)
– Create label(s) needed to skip around the parts of

the expression
– Generate subexpressions with appropriate target

labels and conditions

!exp
– Generate exp with same target label, but reverse

the sense of the condition

24

UW CSE 401/M501 Spring 2025

Reality check

• Lots of projects in the past have evaluated all
booleans to get 1 or 0, then tested that value
for control flow

• Would be nice to do better (as above), but
“simple and works…”

• (And we need to be able to generate the 0/1
anyway for storable boolean expressions)

25

UW CSE 401/M501 Spring 2025

Join Points

• Loops and conditional statements have join points where
execution paths merge

• Generated code must ensure that machine state will be
consistent regardless of which path is taken to get there
– i.e., the paths through an if-else statement must not leave a

different number of values pushed onto the stack
– If we want a particular value in a particular register at a join point,

both paths must put it there, or we need to generate additional
code to move the value to the correct register

• With our simple 1-accumulator model of code generation, this
should usually be true without needing extra work; with better
use of registers it becomes a bigger issue
– With more registers, would need to be sure they are used

consistently at join point regardless of how we get there

26

