
Section 2:
Project Overview,

Grammars, and Ambiguity
CSE 401/M501

Adapted from AU 2024

Announcements

● Due Tonight at 11:59PM: HW1

● Due Thursday 4/17 at 11:59PM: Scanner part of project
● You’ll be using git/CSE GitLab for the project

● Remember to git tag your submission

Agenda

● Walkthrough of starter code

● Grammar/Ambiguity Practice

Code Walkthrough!

Summary: Project Structure
● Important: if you are using IntelliJ (or Eclipse), follow instructions carefully in IDE-

setup-notes to correctly configure the IDE! Clone the repo by itself without the
IDE and read these first!!

● Use ant to clean/compile/test…
● See README.txt for full folder description

○ src: your MiniJava compiler code

■ DemoParser.java and DemoScanner.java: example usages for you

■ MiniJava.java: the main compiler file, you will create this file and build on it for each lab

■ Scanner/minijava.jflex: Scanner code

■ Parser/minijava.cup: Parser code

■ Note: Please don’t push build files; run ant clean before pushing!

○ test: tests you will write

■ junit: JUnit tests for minijava

■ resources: your minijava programs and expected output

○ SamplePrograms: example programs for you

Summary: to support a new token

● src/Parser/minijava.cup

○ Add a new terminal for the symbol

● src/Scanner/minijava.jflex

○ Add a new regex rule to return the new symbol on match

○ If you want the raw value

■ Add a new case in symbolToString

■ Use yytext() to get the raw value

To avoid the common mistakes…

● Implement MiniJava, break the demo code/tests if needed

○ Read input from the specified file (NOT System.in), print output to System.out

○ Print errors to System.err

○ Use System.exit with status 1 after processing entire file if errors; status 0 if none

○ Do not generate /* comment */ tokens

● Write and run (a lot of) JUnit tests

○ …and double check with the MiniJava grammar

● Do NOT modify or commit the generated files

○ Run ant clean before commit

Optional Testing Framework

● Framework by Apollo Zhu (22au)

● Simplifies the test code for MiniJava:

● Allows for testing error output and exit codes too

● Check out the website for more details on how to use this tool!

Grammar Worksheet!

Answers

1) Consider the following syntax for expressions involving addition and field selection:

expr ::= expr + field

expr ::= field

field ::= expr . id

field ::= id

a) Show that this grammar is ambiguous.

Problem 1a

Problem 1a solution

1b) Give an unambiguous context-free grammar that fixes the problem(s) with the grammar in

part (a) and generates expressions with id, field selection, and addition. As in Java, field

selection should have higher precedence than addition and both field selection and addition
should be left-associative (i.e. a+b+c means (a+b)+c).

expr ::= expr + field

expr ::= field

field ::= expr . id

field ::= id

Problem 1b

1b) Give an unambiguous context-free grammar that fixes the problem(s) with the grammar in

part (a) and generates expressions with id, field selection, and addition. As in Java, field

selection should have higher precedence than addition and both field selection and addition
should be left-associative (i.e. a+b+c means (a+b)+c).

The problem is in the first rule for field, which creates an ambiguous precedence

expr ::= expr + field

expr ::= field

field ::= field . id

field ::= id

Problem 1b answer

2) The following grammar is ambiguous:

A ::= B b C

B ::= b | ε

C :: = b | ε

To demonstrate this ambiguity we can use pairs of derivations. Here are five different pairs.

For each pair of derivations, circle OK if the pair correctly proves that the grammar is

ambiguous. Circle WRONG if the pair does not give a correct proof. You do not need to

explain your answers.

(Note: Whitespace in the grammar rules and derivations is used only for clarity. It is not part

of the grammar or of the language generated by it.)

Problem 2

2a)
A => B b C => b b C => b b b

A => B b C => B b b => b b b

Problem 2a
A ::= B b C

B ::= b | ε

C :: = b | ε

2a)
A => B b C => b b C => b b b

A => B b C => B b b => b b b

Wrong: Mix of left/rightmost derivations; also b b b has unique leftmost and unique rightmost

derivations

Problem 2a answer
A ::= B b C

B ::= b | ε

C :: = b | ε

2b)
A => B b C => b b C => b b

A => B b C => b C => b b

Problem 2b
A ::= B b C

B ::= b | ε

C :: = b | ε

2b)
A => B b C => b b C => b b

A => B b C => b C => b b

Ok: Two different leftmost derivations of b b

Problem 2b answer
A ::= B b C

B ::= b | ε

C :: = b | ε

2c)
A => B b C => b b C => b b

A => B b C => B b b => b b

Problem 2c
A ::= B b C

B ::= b | ε

C :: = b | ε

2c)
A => B b C => b b C => b b

A => B b C => B b b => b b

Wrong: Different derivations: one leftmost, one rightmost

Problem 2c answer
A ::= B b C

B ::= b | ε

C :: = b | ε

2d)
A => B b C => b b C => b b

A => B b C => b b C => b b b

Problem 2d
A ::= B b C

B ::= b | ε

C :: = b | ε

2d)
A => B b C => b b C => b b

A => B b C => b b C => b b b

Wrong: Two different strings, not two derivations of same string

Problem 2d answer
A ::= B b C

B ::= b | ε

C :: = b | ε

2e)
A => B b C => B b => b b

A => B b C => B b b => b b

Problem 2e
A ::= B b C

B ::= b | ε

C :: = b | ε

2e)
A => B b C => B b => b b

A => B b C => B b b => b b

Ok: Two different rightmost derivations of b b

Problem 2e answer
A ::= B b C

B ::= b | ε

C :: = b | ε

3) The following grammar is ambiguous. (As before, whitespace is used only for clarity; it is

not part of the grammar or the language generated by it.)

P ::= ! Q | Q && Q | Q

Q ::= P | id

Give a grammar that generates exactly the same language as the one generated by this

grammar but that is not ambiguous. You may resolve the ambiguities however you want –

there is no requirement for any particular operator precedence or associativity in the resulting

grammar.

Problem 3

3) Original grammar:

P ::= ! Q | Q && Q | Q

Q ::= P | id

This solution disambiguates ! and && by putting them in different productions, and also

forces the binary operator && to be left-associative:

P ::= P && Q | Q

Q ::= !Q | id

Other unambiguous grammars that generated all of the strings produced by the original

grammar also received full credit, regardless of how they fixed the problem.

Problem 3 answer

	Administrative
	Slide 1: Section 2: Project Overview, Grammars, and Ambiguity
	Slide 2: Announcements
	Slide 3: Agenda

	Project Walkthrough
	Slide 9: Code Walkthrough!
	Slide 10: Summary: Project Structure
	Slide 11: Summary: to support a new token
	Slide 12: To avoid the common mistakes…
	Slide 13: Optional Testing Framework

	Grammar Worksheet
	Slide 14: Grammar Worksheet!
	Slide 15: Answers
	Slide 16: Problem 1a
	Slide 17: Problem 1a solution
	Slide 18: Problem 1b
	Slide 19: Problem 1b answer
	Slide 20: Problem 2
	Slide 21: Problem 2a
	Slide 22: Problem 2a answer
	Slide 23: Problem 2b
	Slide 24: Problem 2b answer
	Slide 25: Problem 2c
	Slide 26: Problem 2c answer
	Slide 27: Problem 2d
	Slide 28: Problem 2d answer
	Slide 29: Problem 2e
	Slide 30: Problem 2e answer
	Slide 31: Problem 3
	Slide 32: Problem 3 answer

