Section 1: Intro & RegEx

Eric, Karen, Sriya, Bill

Adapted from 24au

Announcements

- Due early next week (Tuesday 4/8, 11:59pm): Project partner info
 - Check Ed discussion board if you need a partner!

March			WE ARE HERE	
Monday	Tuesday	Wednesday	Thursday	Friday
11:30-12:30 OH (Karen) 31 CSE2 150	13:30-14:30 OH (Sriya) 01 CSE2 152	11:30-12:30 OH (Karen) 02 CSE2 150	Section 03 Introductions, logistics, regular expressions	13:30-14:30 OH (Sriya) 04 CSE2 152
13:00-14:00 OH (Bill) CSE 3rd floor breakout	14:30-15:30 OH (Eric) CSE2 152	13:00-14:00 OH (Bill) CSE 3rd floor breakout	15:30-16:30 OH (Eric) CSE2 152	14:30-15:20 Lecture CSE2 G10
14:30-15:20 Lecture CSE2 G10 Course introduction slides		14:30-15:20 Lecture CSE2 G10 Intro. to parsing; regexps and scanning (Read ch. 1, 2.1-2.4)		Regexps and Finite Automata (cont.)

TA Intro

- TA #1
 - Year
 - Industry/research/etc. experience(s)
 - Class(es) you've TA'd.
- TA #2
 - Year
 - Industry/research/etc. experience(s)
 - Class(es) you've TA'd.

TAs' Tips

- Get started on project parts <u>early!</u>
 - Especially on the parts of the project which we explicitly advise to do so.
- Work with your partner on the project so you can both be up-to-speed on everything instead of dividing the tasks up amongst yourselves.
 - The project is entirely cumulative, so making sure that you both know all content helps with debugging the project as it progresses.
 - Project content can (and likely will) show up on exams as well, so make sure you know all of it.
- Instead of thrashing when you can't get a solution, come to OH!
- If you are having non-academic issues which are preventing you from meeting any deadlines (ex: illness), please contact the course staff ASAP so we can try to arrange an accommodation for you.

Icebreakers

- Find a partner, discuss what you did over Spring Break.
- Once time's up, state the following:
 - Your partner's name
 - Your partner's year
 - What your partner is studying (major/ minor/ field(s) of interest/ research project)
 - What your partner did over Spring Break.

RegEx Worksheets!

Answers

Problem 1i

1) Describe in English the set of strings generated by each of the following regular expressions and give two different strings it can produce:

i) (1 | 0)* 0

Problem 1i

1) Describe in English the set of strings generated by each of the following regular expressions and give two different strings it can produce:

i) (1 | 0)* 0Non-empty binary strings ending with 00, 10, 111100000, 01010

Problem 1ii

1) Describe in English the set of strings generated by each of the following regular expressions and give two different strings it can produce:

Problem 1ii

1) Describe in English the set of strings generated by each of the following regular expressions and give two different strings it can produce:

ii) ([A-Z][a-z]* | [0-9]+)

Non-empty sequence of lower case letters with first letter upper cased or sequence of base 10 digits

A, Aa, Abczzz, 0, 3, 42, 17

Problem 1iii

1) Describe in English the set of strings generated by each of the following regular expressions and give two different strings it can produce:

iii) (
$$\varepsilon$$
 | 4?0+1* X 3+)

Problem 1iii

1) Describe in English the set of strings generated by each of the following regular expressions and give two different strings it can produce:

iii) (ε | 4?0+1* X 3+)

This one does not have a simple description, but some strings generated include ϵ , 0X3, 401X333, 40000111X333

However, an approximate description would be: an empty string, or strings starting with an optional 4 followed by one or more 0's then zero or more 1's, followed by the letter X and one or more 3's.

Problem 2i

- 2) Write a regular expression for each of the following specifications:
- i) All strings consisting of 0's and 1's (binary digits) with an even number of 0s

Problem 2i

- 2) Write a regular expression for each of the following specifications:
- i) All strings consisting of 0's and 1's (binary digits) with an even number of 0s 1*(0.1*0.1*)*

(There are other regular expressions that generate the same set of strings)

Problem 2ii

- 2) Write a regular expression for each of the following specifications:
- ii) camelCased variable name in Java, where the alphabet is upper and lower-cased letters without any numbers or underscores

Problem 2ii

- 2) Write a regular expression for each of the following specifications:
- ii) camelCased variable name in Java, where the alphabet is upper and lower-cased letters without any numbers or underscores

$$[a-z]+([A-Z][a-z]*)*$$

Note: this solution allows multiple upper-case letters to appear adjacent to each other. Challenge: produce a solution that does not allow adjacent upper-case letters.

Problem 2iii

- 2) Write a regular expression for each of the following specifications:
- iii) Non-empty binary strings where each 1 directly follows a 0 (challenge: only use symbols in table up until *)

Problem 2iii

- 2) Write a regular expression for each of the following specifications:
- iii) Non-empty binary strings where each 1 directly follows a 0 (challenge: only use symbols in table up until *)

Challenge 1: (0 | 01) (0 | 01)*
Normal: (0+1?)+