
UW CSE401/501m-25sp

Lecture Q: 

Instruction Selection 
(Backend 1)
CSE401/501m:


Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1



UW CSE401/501m-25sp

• Compiler codegen (due last night)

✦ If you have late days and want to fix bugs…


• Project Reports (due Tuesday, no late days allowed)


• HW4 is out now, (due Thursday, standard late days apply)

Administrivia

2



UW CSE401/501m-25sp

Intro — Major Backend Passes

What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

3



UW CSE401/501m-25sp

Intro — Major Backend Passes 
What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

4



UW CSE401/501m-25sp

Our Compiler Journey
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• The front-end should work very quickly

✦ Scanner is ,  Parser is 


✦ Checking is  (or maybe )


• Dataflow, SSA, optimization can be  or worse, but 
is usually much closer to linear time


• Backend

✦ Instruction Selection — fast (naive) or NP-hard

✦ Instruction Scheduling — NP-hard

✦ Register Allocation — NP-hard 

O(n) O(n)
O(n) O(n log n)

O(n2)

Save the Hard Problems for Last
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• Generally some kind of three-address code (3AC)

✦ 

✦ Low-level IR — either assembly or just above 

assembly; objects and other high-level features should 
be gone by this point


• (Often) Focus on basic blocks

✦ If 3AC is SSA, then this implies a dataflow DAG


• Assume “enough” (= ) registers, as in SSA

✦ Change to a finite number of registers during Reg. 

Allocation

r1 ← r2 op r3

∞

IRs for the Backend
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• Goal — Map from a machine/target-independent IR into 
machine/target-specific assembly code


• Assume that we have already decided how objects on the 
heap/stack will be stored/laid-out, and code shape has 
been determined

✦ i.e. middle optimizations are complete


• The problem — in general, an assembly instruction (in 
the output) corresponds to one or more low-level 
machine-independent operations (from the input)

✦ How do we optimally group input operations into 

specific assembly instructions?

1. Instruction Selection
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• Goal — In what order should the instructions be 
executed? (usually, within a basic block)


• Fundamental Tradeoffs! 
✦ Latency — loads and stores take many cycles; we need 

to schedule other instructions to do while we’re waiting

✦ Parallelism — the processor can compute some 

instructions at the same time if we stick them nearby

✦ Locality — want to minimize the number of live 

registers that we need at any point in the sequence

• Given a sequence of instructions, how should they be 

reordered to navigate the above tradeoffs?

2. Instruction Scheduling
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• Goal — Go from using  registers down to K registers


• The Good — As long as we use less than K registers, 
we’re fine (all such solutions are equally good)


• The Bad — If we need more than K registers, we have to 
insert additional loads & stores, called register spilling


• The Ugly — Different solutions to Instruction Selection 
and Scheduling require different numbers of registers

✦ That is, there’s a phase ordering problem for all of the 

backend passes

✦ If registers spill, run a second instruction scheduling 

pass afterwards to account for new loads/stores

∞

3. Register Allocation
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• Even though these three problems are interdependent, we 
can still do pretty well by solving them independently


• Instruction Selection

✦ tree pattern matching + cost problem

✦ Still  registers / SSA


• Instruction Scheduling

✦ Within a block, use a list scheduling algorithm

✦ If not good enough, we use tricks to expose bigger blocks


• Register Allocation

✦ Use a graph coloring algorithm

∞

Conventional Wisdom
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• Intel core microarchitecture 
circa 2019


• 3 big Components

✦ Front-End

✦ Execution Engine

✦ Memory Subsystem


• Let’s see (some of) what a real 
processor does…


• (not on any test!)

Intel Sunny Cove Microarchitecture
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Sunny Cove Front End
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MOP = Macro Op (CISC, i.e. x86)

OP = 
micro Op 

(RISC)

μ
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Sunny Cove Execution Engine
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Register Renaming!

Schedulers!
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• CPUs (especially x86 CPUs) will undo and redo all of the 
work the backend does!  What?!?!  Why even bother?

✦ Instruction Selection — x86 processors have to support 

legacy instructions, hence translation; choice of 
instruction still matters for performance


✦ Register Renaming — If you can’t fit everything into the 
16 x86-64 registers, your program still has to spill, even 
if there are many more microarchitectural registers


✦ Instruction Scheduling — the CPU can only reorder 
instructions within a limited window, so order still 
roughly matters (and affects register usage, etc.)

Modern Out-of-Order Processors
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• Performance!  (well duh, but…)


• Out-of-Order Cores

✦ Memory latencies are unpredictable — dynamically 

rescheduling the instruction stream is fundamentally 
more effective than any static schedule


• In-Order Cores

✦ If you start stripping this stuff away, (energy efficiency!) 

then the quality of static scheduling, instruction 
selection and register allocation becomes much more 
important!


✦ (very important for low-power & accelerators)

Why Do CPUs Do All This?
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• The cost model is (always) very wrong


• Some false claims

✦ a program that executes fewer instructions will run 

faster

✦ Minimizing register usage is always better than using 

more registers

✦ Maximizing the amount of work that can be done in 

parallel is always better than not doing that


• Biggest Costs — loads, stores, cache misses, no 
instruction-level parallelism to exploit

Takeaways for Compiler Writing
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Expressions 





(value of register w/this name) 






(read from mem. addr. e) 

e ::= CONST(int)
| TEMP(tname)

| BINOP(op, e1, e2)
| READ(e)

| CALL( f, e1, …, en)

A Low-Level IR*

20 *This Example IR is adapted from Appel

Statements 





(write  to addr. ) 













(e.g. if , jump to , 
otherwise jump to )

s ::= MOVE(tname, e)
| WRITE(e1, e2)

e2 e1

| SEQ(s1, s2)
| LABEL(lname)
| JUMP(lname)
| CJUMP(op, e1, e2,

lname1, lname2)
e1 < e2 lname1

lname2
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• Read a local variable at a known offset -16 from the 
frame pointer fp, and assign it to temporary x

✦ Linear Code





✦ Tree Diagram

MOVE (x, READ (BINOP( + , TEMP( fp), CONST(−16))))

Low-Level IR Example (1)

21

MOVE

x

+

READ

fp −16



UW CSE401/501m-25sp

• Copy a 32-bit integer from x[k] to y[k]

✦ Linear Code





		 


✦ Tree Diagram

WRITE (BINOP (+, TEMP(y), BINOP( × , TEMP(k), CONST(4))),

READ (BINOP (+, TEMP(x), BINOP( × , TEMP(k), CONST(4)))))

Low-Level IR Example (2)

22

+

x ×

k 4

+

y ×

k 4

READ

WRITE
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• If we have SSA, trees will be much shorter


• However, SSA in a basic block can be interpreted as a 
DAG (directed acyclic graph)


• Two possible ways to proceed

✦ Use an instruction selection algorithm designed for 

DAGs

✦ Use an instruction selection algorithm designed for 

trees and adapt it to DAG structure

Linear IR as Trees or DAGs
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Instructions 
ADD			r1	<-	r2	+	r3

SUB			r1	<-	r2	-	r3

MUL			r1	<-	r2	*	r3

ADDI		r1	<-	r2	+	c

SUBI		r1	<-	r2	-	c

LOAD		r1	<-	Mem[r2	+	c]

STORE	Mem[r1	+	c]	<-	r2

//	jumps,	calls,	etc.

//	omitted	for	simplicity

A Target Language
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• In most low-level IRs, there are many possible code 
sequences that implement the input “low-level IR” code 
correctly

✦ e.g. set %rax to 0 on x86-64


movq		$0,%rax									salq		64,%rax

subq		%rax,%rax							shrq		64,%rax

xorq		%rax,%rax							imulq	$0,%rax


✦ Other (esp. CISC) machine instructions do many things 
at the same time, e.g. x86 addressing modes

movq		offset(%rbase,	%rindex,	scale),	%rdst


• So which instructions should we use & in what way?

The Instruction Selection Problem
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• Recall — Why pick one selection over another?

✦ Fastest Execution, Smallest Code, Minimal Power 

Consumption, Reduce Memory Traffic, …


• As we discussed earlier, almost impossible to model this 
accurately.  (so don’t try too hard to be accurate!)

✦ Simple answer — Each instruction has cost 1

✦ Slightly less bad — maintain a table of costs for each 

instruction (e.g. loads and stores have higher cost; 
divide higher than addition, etc.)

Instruction Selection Criteria
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• We can specify the “meaning” of target instructions by 
describing potential patterns to match


• Each pattern has a target instruction on the left with 
holes and a source (low-level IR) tree on the right using 
those same holes

✦ exception — the target code on the left designates a 

special position * as the “result” (assigned a new name)


• e.g.

ADDI	r*	<-	e	+	c		 		⟸ BINOP( + , CONST(c), e)

Defining Patterns

28
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• Arithmetic

- r																			 		 

- ADD		r*	<-	e1	+	e2		 		  
 
 
 

- MUL		r*	<-	e1	 	e2		 		  
 
 
 

- SUB	and	DIV	similarly

⟸ TEMP(r)
⟸ BINOP( + , e1, e2)

× ⟸ BINOP( × , e1, e2)

Patterns for Example Target (1)

29
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• Immediate Instructions

✦ assume we have a register r0 that always holds 0 

- ADDI	r*	<-	e	+	c				 		  
ADDI	r*	<-	e	+	c				 		  
ADDI	r*	<-	r0	+	c			 		  
 
 
 

- SUBI	r*	<-	r	-	c				 		  

⟸ BINOP( + , e, CONST(c))
⟸ BINOP( + , CONST(c), e)
⟸ CONST(c)

⟸ BINOP( − , e, c)

Patterns for Example Target (1)

30
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CONST

+

CONST
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• Load

✦ assume we have a register r0 that always holds 0 

- LOAD	r*	<-	M[e	+	c]		 		  

LOAD	r*	<-	M[e	+	c]		 		  

LOAD	r*	<-	M[r0	+	c]	 		  
LOAD	r*	<-	M[e	+	0]		 		  

⟸ READ (BINOP( + , e, CONST(c)))
⟸ READ (BINOP( + , CONST(c), e))
⟸ READ (CONST(c))
⟸ READ (e)

Target Patterns (3)

31

+

CONST

READ

+

CONST

READ

CONST

READ
READ
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• Store

✦ assume we have a register r0 that always holds 0 

 

- STORE	M[e1	+	c]	<-	e2		 		  

STORE	M[e1	+	c]	<-	e2		 		  

STORE	M[r0	+	c]	<-	e			 		  

STORE	M[e1	+	0]	<-	e2		 		  

⟸ WRITE (BINOP( + , e1, CONST(c)), e2)
⟸ WRITE (BINOP( + , CONST(c), e1), e2)
⟸ WRITE (CONST(c), e2)
⟸ WRITE (e1, e2)

Target Patterns (4)
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+

CONST

WRITE

+

CONST

WRITE

CONST

WRITE
WRITE
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• Goal — Recursively match / “tile” the input tree using the 
provided patterns


• The cost of each tile is given by the cost model


• A tiling is a set of <node, pattern> pairs

✦ (pattern gives the shape of the tile) the input tree at 

node n must match the right-hand-side of the pattern p 

• A valid tiling must cover the tree

✦ For each <n, p> every node m (except n) matched by p 

is covered by the tile <n, p>

✦ A valid tiling covers all nodes except the root, and no 

two tiles overlap

Tree Pattern Matching — Tiles
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• Goal — Recursively match / “parse” the input tree using 
the provided tree grammar rules


• Works very similar to parsing theory from earlier on!


• e.g. we can use LR parsing to do instruction selection


• One key point — different grammatical classes 
(i.e. non-terminals)

✦ In our example low-level IR, there are only expressions

✦ In general, we want to support ISAs/IRs with different 

integer/floating-point register types

✦ Patterns/productions can only “plug together” where 

they agree on these “types”

Tree Pattern Matching — Parsing

35



UW CSE401/501m-25sp

• Maximal Munch (Greedy)

✦ Walk the input IR tree from the top-down

✦ Match the largest possible tile at each step 

(corresponds to all ISA instructions having equal cost)


• Dynamic Programming

✦ Process the tree bottom-up

✦ Assign costs to each sub-tree by trying each possible 

matching pattern and looking up the cheapest solution 
to sub-problems/sub-trees (i.e. dynamic programming)

Two Major Algorithm Styles
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• a[i] := x   (assume i in register/temp and a,x on stack)

Example Tree Match

37

+

×

TEMP i CONST 4

WRITE

READ

TEMP fp

+

CONST a

READ

TEMP fp

+

CONST x
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• a[i] := x   (assume i in register/temp and a,x on stack)
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+

×

TEMP i CONST 4

WRITE

READ

TEMP fp

+

CONST a

READ

TEMP fp

+

CONST x

1

2

3 4

5

6

7 8
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• Given a tiled tree, to generate code

✦ Do a post-order walk of the tiles

✦ Each tile generates a code sequence after you’re done 

visiting it

✦ Intermediate values (where the tiles are connected) 

correspond to newly named temporaries/registers

Generating Code
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Example Tree Match
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+

×

TEMP i CONST 4

WRITE

READ

TEMP fp

+

CONST a

READ

TEMP fp

+

CONST x

1

2

3 4

5
6

7 8

9

2	LOAD		r1	<-	M[fp	+	a]

4	ADDI		r2	<-	r0	+	4

5	MUL			r3	<-	i	*	r2

6	ADD			r4	<-	r1	+	r3

8	LOAD		r5	<-	M[fp	+	x]

9	STORE	M[r4	+	0]	<-	r5


