Lecture Q:

Instruction Selection
(Backend 1)

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

Administrivia

e Compiler codegen (due last night)
+ If you have late days and want to fix bugs...
* Project Reports (due Tuesday, no late days allowed)

e HW4 is out now, (due Thursday, standard late days apply)

Outline

Intro — Major Backend Passes
What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem
Algorithms for Instruction Selection

UW CSE401/501m-25sp

Outline

Intro — Major Backend Passes

Our Compiler Journey

Front-End of the Compiler

Instr. 3AC/
Select. ASM

Back-End of the Compiler

Instr.
Sched.

3AC/
ASM

Reg.
Alloc.

UW CSE401/501m-25sp

ASM

UW CSE401/501m-25sp

Save the Hard Problems for Last

* The front-end should work very quickly
+ Scanner is O(n), Parseris O(n)
+ Checking is O(n) (or maybe O(nlog n))
e Dataflow, SSA, optimization can be O(nz) or worse, but
Is usually much closer to linear time
 Backend
+ Instruction Selection — fast (naive) or NP-hard
+ Instruction Scheduling — NP-hard
+ Register Allocation — NP-hard

UW CSE401/501m-25sp

IRs for the Backend

* Generally some kind of three-address code (BAC)
+ I < T1,0p Iy

+ Low-level IR — either assembly or just above
assembly; objects and other high-level features should
be gone by this point

e (Often) Focus on basic blocks
+ If BAC is SSA, then this implies a dataflow DAG

e Assume “enough” (= o0) registers, as in SSA

+ Change to a finite number of registers during Reg.
Allocation

UW CSE401/501m-25sp

1. Instruction Selection

e Goal — Map from a machine/target-independent IR into
machine/target-specific assembly code

 Assume that we have already decided how objects on the
heap/stack will be stored/laid-out, and code shape has
been determined

+ i.e. middle optimizations are complete

* The problem — in general, an assembly instruction (in
the output) corresponds to one or more low-level
machine-independent operations (from the input)

+ How do we optimally group input operations into
specific assembly instructions?

8

UW CSE401/501m-25sp

2. Instruction Scheduling

e Goal — In what order should the instructions be
executed? (usually, within a basic block)

e Fundamental Tradeoffs!

+ Latency — loads and stores take many cycles; we need
to schedule other instructions to do while we’re waiting

+ Parallelism — the processor can compute some
instructions at the same time if we stick them nearby

+ Locality — want to minimize the number of live
registers that we need at any point in the sequence

e @Given a sequence of instructions, how should they be
reordered to navigate the above tradeoffs?

9

UW CSE401/501m-25sp

3. Register Allocation

e Goal — Go from using oo registers down to K registers

e The Good — As long as we use less than K registers,
we’re fine (all such solutions are equally good)

e The Bad — If we need more than K registers, we have to
iInsert additional loads & stores, called register spilling

e The Ugly — Different solutions to Instruction Selection
and Scheduling require different numbers of registers

+ That is, there’s a phase ordering problem for all of the
backend passes

+ If registers spill, run a second instruction scheduling
pass afterwards to account for new loads/stores

10

UW CSE401/501m-25sp

Conventional Wisdom

e Even though these three problems are interdependent, we
can still do pretty well by solving them independently

e |nstruction Selection

+ tree pattern matching + cost problem

+ Still oo registers / SSA
e |nstruction Scheduling

+ Within a block, use a list scheduling algorithm

+ If not good enough, we use tricks to expose bigger blocks
* Register Allocation

+ Use a graph coloring algorithm

11

Outline

What Real CPUs Do

12

UW CSE401/501m-25sp

Intel Sunny Cove Microarchitecture

Front End [nstructior)
Cache Tag| L1 Instruction Cache
JHOP Cache] 32KiB 8-Way Infltzr;_mtlo T!_B
Tag QG-em
16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP
Instruction Queue
l (50, 2x25 erSries) =) |
MOP MOP MOP MOP MOP
MicroCode 4-Way Decode
Sequencer
ROM
(MS ROM)

Intel core microarchitecture
circa 2019

e 3 big Components
+ Front-End

apAd/ar9

E t . E .
y Xecution zngine
Register Alias Tables (RATS) N o
Primery Subw s nop nop nor nop nop nop Q =
W BT #o,, (BOB) (96-entry) e o N To
==l | -
E - 3 2w
- s 25520 4 Memorv Subsvstem
H wop wop wop woP wop wop wop woP B O IE (@]
H | é o 2
= ERE
(280 Registers) (224 Registers) O < ~ 0
3~ 0
(160-entries in total) 3| (tll” = y
o o e men 32 Let’s see (some of) what a real
[Fomo] [rewi] [Poms] [Pome] [Pord] M’ M M IM M’ 0~
HOP nop HOP HOP HOP ~
P) ALU ALU A0 [Stors Datd [Store Dats] [Load AGU] [Store AGU] [Load AGU] [Store AGU]
LEA LEA LEA
ek rocessor does
Branch || Int Divide Branc
— [FmA FMA__|[_FmA_| EUs T
o e ALU
gm— ‘. SuE. [Load][Store [Load][Store]
i f Load Buffer | | Store Buffer & Forwarding L
Execution Engine (128 entries) (72 entries) \g
B}
=== . ¢ (not on any test!)
® | |
L1 Data Cache
48KiB 12-Way
Line Fill Buffers (LFB)
Memory Subsystem (12-ertry)

13

UW CSE401/501m-25sp

Sunny Cove Front End

MOP = Macro Op (CISC, i.e. x86)

Instruction| '
Cache Tag] L1 Instruction Cache

Front End

. ; i Instruftion TLB
LIOP Cache 32KiB 8-Way et s
Tag (1G6-entlly, 2/4 MiB)

e : 16 Bytes/cycle
: Branch
==+ |1 Predictor Instruction Fetch & PreDecode
MOP MOP MOP MOP MOP MOP

Instruction Queue
(50, 2x25 entries)

MOP

Macro. Fusion

MOP MOP MOP MOP

MicroCode 4-Way Decode
Sequencer

ROM Complex| | Simple || Simple Simple
{(MS ROM) Decoder| |Decoder| |Decoder| |Decoder

=4 uOPs porP HoP noOP

UOP =

=4 noPs (SE)
. =5 pOPs
()
MiCcro Op [Peeiimenafer®s| gpops
(2,304 pOPs; 8-Way)
(RISC) TP A o 4

Loop Stream

Detector {LSD) Allocation Queue (IDQ) (140, 2x70 pOPs)

14

UW CSE401/501m-25sp

Sunny Cove Execution Engine

Front End [

A135) Aem-0Z g1 08Z'T

(3us1|2) Aem-g BINZTS

(a

1 Data Cache

L1 D:
48KiB 12-Way
Memory Subsystem

Schedulers!

Register Renaming!

Register Alias Tables (RATs)
Primery
RT T

“o,

popP

pop pop popP

popP Branch Ord

FP [Move Elimination

]Ren

ame / Allocate / Retirement
ReOrder Buffer (352 entries)

[Ones Idioms | IZeroing ldiomsl

(280 Registers)

Integer Physical Register File

Vector Physical Register File

(224 Registers)

Arithmetic Scheduler

Store Data
Scheduler

AGU Scheduler

AGU Scheduler

| Port0] | Portl | | Port5S |

| Port6 |

[' AL ALU
—LEA LEA LEA LEA
—_Shift || Multiply |[Mu Sh
Branch|[Int Divide_ Branc
P FMAE [FMA
Ul_Aw ALU ALU
b 1 {|__Shift e
g P Divide || Shuffle

Execution Engine

15

| Portd | | Port8 |

| Port 2 |

| Port 8 | | Port2 | | Port8 |

Load AGU | |Store AGU

LSU | _Load || Store | [Load || Store |
Load Buffer Store Buffer & Forwarding
(128 entries) (72 entries)

UW CSE401/501m-25sp

Modern Out-of-Order Processors

» CPUs (especially x86 CPUs) will undo and redo all of the
work the backend does! What?!?! Why even bother?

+ Instruction Selection — x86 processors have to support
legacy instructions, hence translation; choice of
instruction still matters for performance

+ Register Renaming — If you can'’t fit everything into the
16 x86-64 reqisters, your program still has to spill, even
If there are many more microarchitectural registers

+ Instruction Scheduling — the CPU can only reorder
Instructions within a limited window, so order still
roughly matters (and affects register usage, etc.)

16

UW CSE401/501m-25sp

Why Do CPUs Do All This?

* Performance! (well duh, but...)
e Qut-of-Order Cores

+ Memory latencies are unpredictable — dynamically
rescheduling the instruction stream is fundamentally
more effective than any static schedule

* In-Order Cores

+ If you start stripping this stuff away, (energy efficiency!)
then the quality of static scheduling, instruction

selection and register allocation becomes much more
important!

+ (very important for low-power & accelerators)

17

UW CSE401/501m-25sp

Takeaways for Compiler Writing

* The cost model is (always) very wrong

e Some false claims

+ a program that executes fewer instructions will run
faster

+ Minimizing register usage is always better than using
more registers

+ Maximizing the amount of work that can be done in
parallel is always better than not doing that

* Biggest Costs — loads, stores, cache misses, no
instruction-level parallelism to exploit

18

Outline

A Low-Level IR to Work With

19

UW CSE401/501m-25sp

A Low-Level IR”

Expressions Statements
e .:= CONST(int) s .:= MOVE(tname, e)
| TEMP(tname) | WRITE (e, e,)
(value of register w/this name) (write e, to addr. e,)
| BINOP(op, e, e,) SEQ(s, 5,)
| READ(e) LABEL(Iname)

(read from mem. addr. e)

| CALL(f, e, ...,e,) JUMP(Iname)

CJUMP(op, e, e,,

[name,, [name,)
(e.g. if e; < e,, jump to [name,,
otherwise jump to Iname,)

20 *This Example IR is adapted from Appel

UW CSE401/501m-25sp

Low-Level IR Example (1)

* Read a local variable at a known offset -16 from the
frame pointer fp, and assign it to temporary x

+ Linear Code
MOVE (x, READ (BINOP(+, TEMP(fp), CONST(~16)))

+ Tree Diagram MOVE

\
X READ

|
N
fp ~1

6

21

UW CSE401/501m-25sp

Low-Level IR Example (2)

e Copy a 32-bit integer from x[k] to y[K]

+ Linear Code
WRITE <BINOP (+, TEMP(y), BINOP(X , TEMP(k), CONST(4))),

READ (BINOP (+, TEMP(x), BINOP(x , TEMP(k), CONST(4)))))

+ Tree Diagram WRITE

\
- READ

/+\>< |
/N /\
k 4

/\

Y

22

UW CSE401/501m-25sp

Linear IR as Trees or DAGS

e |[f we have SSA, trees will be much shorter

* However, SSA in a basic block can be interpreted as a
DAG (directed acyclic graph)

 Two possible ways to proceed

+ Use an instruction selection algorithm designed for
DAGs

+ Use an instruction selection algorithm designed for
trees and adapt it to DAG structure

23

A Target Language

Instructions

ADD rl
SUB rl
MUL rl
ADDI r1l
SUBI rl
LOAD rl

<_

r2 + r3

r2 - r3

r2 * r3

r2 + c

r2 - c
Mem[r2 + c]

STORE Mem[rl + c] <- r2
// jumps, calls, etc.

// omitted for simplicity

24

UW CSE401/501m-25sp

Outline

The Instruction Selection Problem

25

UW CSE401/501m-25sp

The Instruction Selection Problem

* |n most low-level IRs, there are many possible code
seguences that implement the input “low-level IR” code
correctly

+ e.g. set %rax to 0 on x86-64

movqg $0,%rax salg 64,%rax
subqg %rax,%rax shrq 64,%rax
xorq %rax,srax imulg $0,%rax

+ Other (esp. CISC) machine instructions do many things

at the same time, e.g. x86 addressing modes
movq offset(%rbase, %rindex, scale), %rdst

 So which instructions should we use & in what way?

26

UW CSE401/501m-25sp

Instruction Selection Criteria

 Recall — Why pick one selection over another?

+ Fastest Execution, Smallest Code, Minimal Power
Consumption, Reduce Memory Traffic, ...

* As we discussed earlier, almost impossible to model this
accurately. (so don’t try too hard to be accuratel)

+ Simple answer — Each instruction has cost 1

+ Slightly less bad — maintain a table of costs for each
instruction (e.g. loads and stores have higher cost;
divide higher than addition, etc.)

27

UW CSE401/501m-25sp

Defining Patterns

* We can specify the “meaning” of target instructions by
describing potential patterns to match

 Each pattern has a target instruction on the left with
holes and a source (low-level IR) tree on the right using
those same holes

+ exception — the target code on the left designates a
special position * as the “result” (assigned a new name)

* e.g.
ADDI r* <- e + ¢ <= BINOP(+ ,CONSI(c),e)

28

E401/501m-25sp

Patterns for Example Targeu’vcm(1)

e Arithmetic

o — TEMP(r)
_ ADD r* <- el + e2 <= BINOP(+,e;,e,)—— /+\

X
- MUL r* <- el X e2 <= BINOP(X,ej,e) = / \

- SUB and DIV similarly

29

UW CSE401/501m-25sp

Patterns for Example Target (1)

* Immediate Instructions /+\
+ assume we have a register r0 that always holds 0 CONST

vV
BINOP(+ ,e, CONST(c))

BINOP(+ ,CONST(c),e)
CONST(c) A

- ADDI r* <- e + ¢
ADDI r* <- e + C
ADDI r* <- ro + c

(I

CONST

- SUBI r* <- r - c &= BINOP(—,e,c)

N
TN

CONST

30

Target Patterns (3)

e | oad

+ assume we have a register r0 that always holds 0

UW CSE401/501m-25sp

READ
|

N

CONST
vV

- LOAD r* <- M[e + c] <= READ (BINOP(+ e, CONST(c)))
LOAD r* <- M[e + c] <= READ (BINOP(+ ,CONST(c),e))
LOAD r* <- M[r@ + c] <= READ (CONST(c))

LOAD r* <- M[e + 9] <= READ (e)

A

A

READ

READ

CONST

31

)

READ
|

|
/N

CONST

UW CSE401/501m-25sp

Target Patterns (4)

WRITE
e Store YRR
|
+ assume we have a register r0 that always holds 0 / AN
CONST
vV
- STORE M[el + c] <- e2 <= WRITE (BINOP(+,e;, CONST(c)),e,)
STORE M[el + c] <- e2 <= WRITE (BINOP(+,CONST(c),e,),e,)
STORE M[r@ + c] <- e <= WRITE (CONST(c),e,) /\
STORE M[el + @] <- e2 <= WRITE (e, ¢,)
/ WRITE
WRITE +

/ \ WRITE y

/|| consT
CONST

32

Outline

Algorithms for Instruction Selection

33

UW CSE401/501m-25sp

Tree Pattern Matching — Tiles

e Goal — Recursively match / “tile” the input tree using the
provided patterns

* The cost of each tile is given by the cost model
 Atiling is a set of <node, pattern> pairs

+ (pattern gives the shape of the tile) the input tree at
node n must match the right-hand-side of the pattern p

e A valid tiling must cover the tree

+ For each <n, p> every node m (except n) matched by p
IS covered by the tile <n, p>

+ A valid tiling covers all nodes except the root, and no
two tiles overlap

34

UW CSE401/501m-25sp

Tree Pattern Matching — Parsing

e Goal — Recursively match / “parse” the input tree using
the provided tree grammar rules

* Works very similar to parsing theory from earlier on!
* e.g. we can use LR parsing to do instruction selection

* One key point — different grammatical classes
(i.e. non-terminals)

+ In our example low-level IR, there are only expressions

+ In general, we want to support ISAs/IRs with different
integer/floating-point register types

+ Patterns/productions can only “plug together” where
they agree on these “types”

35

UW CSE401/501m-25sp

Two Major Algorithm Styles

e Maximal Munch (Greedy)
+ Walk the input IR tree from the top-down

+ Match the largest possible tile at each step
(corresponds to all ISA instructions having equal cost)

 Dynamic Programming
+ Process the tree bottom-up

+ Assign costs to each sub-tree by trying each possible
matching pattern and looking up the cheapest solution
to sub-problems/sub-trees (i.e. dynamic programming)

36

Example Tree Match

e ali] :=x (assume i in register/temp and a,x on stack)

WRITE

I

READ

+ \
/ "\ +
READ X / \
TEMP fp CONST x
\ /N
+\ TEMP i CONST 4

TEMP fo CONST a

37

UW CSE401/501m-25sp

Example Tree Match

e ali] :=x (assume i in register/temp and a,x on stack)

TEMP fo| CONST a

38

UW CSE401/501m-25sp

Generating Code

* QGiven a tiled tree, to generate code
+ Do a post-order walk of the tiles
+ Each tile generates a code sequence after you’re done
visiting it
+ Intermediate values (where the tiles are connected)
correspond to newly named temporaries/registers

39

UW CSE401/501m-25sp

Example Tree Match

2 LOAD rl1 <- M[fp + a]
4 ADDI r2 <- ro + 4

5 MUL r3 <- 1i * r2

6 ADD r4 <- rl + r3

8 LOAD r5 <- M[fp + X]
9 STORE M[r4 + @] <- r5

40

