
UW CSE401/501m-25sp

Lecture Q:

Instruction Selection
(Backend 1)
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

• Compiler codegen (due last night)

✦ If you have late days and want to fix bugs…

• Project Reports (due Tuesday, no late days allowed)

• HW4 is out now, (due Thursday, standard late days apply)

Administrivia

2

UW CSE401/501m-25sp

Intro — Major Backend Passes

What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

3

UW CSE401/501m-25sp

Intro — Major Backend Passes
What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

4

UW CSE401/501m-25sp

Our Compiler Journey

5

3-Address
CodeScanner + Parser + Checker

Source
Code

(strings)

3AC 
+ 

CFG

3AC 
+ 

CFG

Machine Independent
Optimization Passes

Back-End of the Compiler

Front-End of the Compiler

ASM3AC/
ASM

3AC/
ASM

3AC 
+ 

CFG

Instr.
Select.

Instr.
Sched.

Reg.
Alloc.

UW CSE401/501m-25sp

• The front-end should work very quickly

✦ Scanner is , Parser is

✦ Checking is (or maybe)

• Dataflow, SSA, optimization can be or worse, but
is usually much closer to linear time

• Backend

✦ Instruction Selection — fast (naive) or NP-hard

✦ Instruction Scheduling — NP-hard

✦ Register Allocation — NP-hard

O(n) O(n)
O(n) O(n log n)

O(n2)

Save the Hard Problems for Last

6

UW CSE401/501m-25sp

• Generally some kind of three-address code (3AC)

✦

✦ Low-level IR — either assembly or just above

assembly; objects and other high-level features should
be gone by this point

• (Often) Focus on basic blocks

✦ If 3AC is SSA, then this implies a dataflow DAG

• Assume “enough” (=) registers, as in SSA

✦ Change to a finite number of registers during Reg.

Allocation

r1 ← r2 op r3

∞

IRs for the Backend

7

UW CSE401/501m-25sp

• Goal — Map from a machine/target-independent IR into
machine/target-specific assembly code

• Assume that we have already decided how objects on the
heap/stack will be stored/laid-out, and code shape has
been determined

✦ i.e. middle optimizations are complete

• The problem — in general, an assembly instruction (in
the output) corresponds to one or more low-level
machine-independent operations (from the input)

✦ How do we optimally group input operations into

specific assembly instructions?

1. Instruction Selection

8

UW CSE401/501m-25sp

• Goal — In what order should the instructions be
executed? (usually, within a basic block)

• Fundamental Tradeoffs!
✦ Latency — loads and stores take many cycles; we need

to schedule other instructions to do while we’re waiting

✦ Parallelism — the processor can compute some

instructions at the same time if we stick them nearby

✦ Locality — want to minimize the number of live

registers that we need at any point in the sequence

• Given a sequence of instructions, how should they be

reordered to navigate the above tradeoffs?

2. Instruction Scheduling

9

UW CSE401/501m-25sp

• Goal — Go from using registers down to K registers

• The Good — As long as we use less than K registers,
we’re fine (all such solutions are equally good)

• The Bad — If we need more than K registers, we have to
insert additional loads & stores, called register spilling

• The Ugly — Different solutions to Instruction Selection
and Scheduling require different numbers of registers

✦ That is, there’s a phase ordering problem for all of the

backend passes

✦ If registers spill, run a second instruction scheduling

pass afterwards to account for new loads/stores

∞

3. Register Allocation

10

UW CSE401/501m-25sp

• Even though these three problems are interdependent, we
can still do pretty well by solving them independently

• Instruction Selection

✦ tree pattern matching + cost problem

✦ Still registers / SSA

• Instruction Scheduling

✦ Within a block, use a list scheduling algorithm

✦ If not good enough, we use tricks to expose bigger blocks

• Register Allocation

✦ Use a graph coloring algorithm

∞

Conventional Wisdom

11

UW CSE401/501m-25sp

Intro — Major Backend Passes

What Real CPUs Do
A Low-Level IR to Work With

The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

12

UW CSE401/501m-25sp

• Intel core microarchitecture
circa 2019

• 3 big Components

✦ Front-End

✦ Execution Engine

✦ Memory Subsystem

• Let’s see (some of) what a real
processor does…

• (not on any test!)

Intel Sunny Cove Microarchitecture

13

UW CSE401/501m-25sp

Sunny Cove Front End

14

MOP = Macro Op (CISC, i.e. x86)

OP =
micro Op

(RISC)

μ

UW CSE401/501m-25sp

Sunny Cove Execution Engine

15

Register Renaming!

Schedulers!

UW CSE401/501m-25sp

• CPUs (especially x86 CPUs) will undo and redo all of the
work the backend does! What?!?! Why even bother?

✦ Instruction Selection — x86 processors have to support

legacy instructions, hence translation; choice of
instruction still matters for performance

✦ Register Renaming — If you can’t fit everything into the
16 x86-64 registers, your program still has to spill, even
if there are many more microarchitectural registers

✦ Instruction Scheduling — the CPU can only reorder
instructions within a limited window, so order still
roughly matters (and affects register usage, etc.)

Modern Out-of-Order Processors

16

UW CSE401/501m-25sp

• Performance! (well duh, but…)

• Out-of-Order Cores

✦ Memory latencies are unpredictable — dynamically

rescheduling the instruction stream is fundamentally
more effective than any static schedule

• In-Order Cores

✦ If you start stripping this stuff away, (energy efficiency!)

then the quality of static scheduling, instruction
selection and register allocation becomes much more
important!

✦ (very important for low-power & accelerators)

Why Do CPUs Do All This?

17

UW CSE401/501m-25sp

• The cost model is (always) very wrong

• Some false claims

✦ a program that executes fewer instructions will run

faster

✦ Minimizing register usage is always better than using

more registers

✦ Maximizing the amount of work that can be done in

parallel is always better than not doing that

• Biggest Costs — loads, stores, cache misses, no
instruction-level parallelism to exploit

Takeaways for Compiler Writing

18

UW CSE401/501m-25sp

Intro — Major Backend Passes

What Real CPUs Do

A Low-Level IR to Work With
The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

19

UW CSE401/501m-25sp

Expressions

(value of register w/this name)

(read from mem. addr. e)

e ::= CONST(int)
| TEMP(tname)

| BINOP(op, e1, e2)
| READ(e)

| CALL(f, e1, …, en)

A Low-Level IR*

20 *This Example IR is adapted from Appel

Statements

(write to addr.)

(e.g. if , jump to ,
otherwise jump to)

s ::= MOVE(tname, e)
| WRITE(e1, e2)

e2 e1

| SEQ(s1, s2)
| LABEL(lname)
| JUMP(lname)
| CJUMP(op, e1, e2,

lname1, lname2)
e1 < e2 lname1

lname2

UW CSE401/501m-25sp

• Read a local variable at a known offset -16 from the
frame pointer fp, and assign it to temporary x

✦ Linear Code

✦ Tree Diagram

MOVE (x, READ (BINOP(+ , TEMP(fp), CONST(−16))))

Low-Level IR Example (1)

21

MOVE

x

+

READ

fp −16

UW CSE401/501m-25sp

• Copy a 32-bit integer from x[k] to y[k]

✦ Linear Code

		

✦ Tree Diagram

WRITE (BINOP (+, TEMP(y), BINOP(× , TEMP(k), CONST(4))),

READ (BINOP (+, TEMP(x), BINOP(× , TEMP(k), CONST(4)))))

Low-Level IR Example (2)

22

+

x ×

k 4

+

y ×

k 4

READ

WRITE

UW CSE401/501m-25sp

• If we have SSA, trees will be much shorter

• However, SSA in a basic block can be interpreted as a
DAG (directed acyclic graph)

• Two possible ways to proceed

✦ Use an instruction selection algorithm designed for

DAGs

✦ Use an instruction selection algorithm designed for

trees and adapt it to DAG structure

Linear IR as Trees or DAGs

23

UW CSE401/501m-25sp

Instructions
ADD			r1	<-	r2	+	r3

SUB			r1	<-	r2	-	r3

MUL			r1	<-	r2	*	r3

ADDI		r1	<-	r2	+	c

SUBI		r1	<-	r2	-	c

LOAD		r1	<-	Mem[r2	+	c]

STORE	Mem[r1	+	c]	<-	r2

//	jumps,	calls,	etc.

//	omitted	for	simplicity

A Target Language

24

UW CSE401/501m-25sp

Intro — Major Backend Passes

What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem
Algorithms for Instruction Selection

Outline

25

UW CSE401/501m-25sp

• In most low-level IRs, there are many possible code
sequences that implement the input “low-level IR” code
correctly

✦ e.g. set %rax to 0 on x86-64

movq		$0,%rax									salq		64,%rax

subq		%rax,%rax							shrq		64,%rax

xorq		%rax,%rax							imulq	$0,%rax

✦ Other (esp. CISC) machine instructions do many things
at the same time, e.g. x86 addressing modes

movq		offset(%rbase,	%rindex,	scale),	%rdst

• So which instructions should we use & in what way?

The Instruction Selection Problem

26

UW CSE401/501m-25sp

• Recall — Why pick one selection over another?

✦ Fastest Execution, Smallest Code, Minimal Power

Consumption, Reduce Memory Traffic, …

• As we discussed earlier, almost impossible to model this
accurately. (so don’t try too hard to be accurate!)

✦ Simple answer — Each instruction has cost 1

✦ Slightly less bad — maintain a table of costs for each

instruction (e.g. loads and stores have higher cost;
divide higher than addition, etc.)

Instruction Selection Criteria

27

UW CSE401/501m-25sp

• We can specify the “meaning” of target instructions by
describing potential patterns to match

• Each pattern has a target instruction on the left with
holes and a source (low-level IR) tree on the right using
those same holes

✦ exception — the target code on the left designates a

special position * as the “result” (assigned a new name)

• e.g.

ADDI	r*	<-	e	+	c		 		⟸ BINOP(+ , CONST(c), e)

Defining Patterns

28

UW CSE401/501m-25sp

• Arithmetic

- r																			 		

- ADD		r*	<-	e1	+	e2		 		  
 
 
 

- MUL		r*	<-	e1	 	e2		 		  
 
 
 

- SUB	and	DIV	similarly

⟸ TEMP(r)
⟸ BINOP(+ , e1, e2)

× ⟸ BINOP(× , e1, e2)

Patterns for Example Target (1)

29

×

+

UW CSE401/501m-25sp

• Immediate Instructions

✦ assume we have a register r0 that always holds 0 

- ADDI	r*	<-	e	+	c				 		  
ADDI	r*	<-	e	+	c				 		  
ADDI	r*	<-	r0	+	c			 		  
 
 
 

- SUBI	r*	<-	r	-	c				 		  

⟸ BINOP(+ , e, CONST(c))
⟸ BINOP(+ , CONST(c), e)
⟸ CONST(c)

⟸ BINOP(− , e, c)

Patterns for Example Target (1)

30

+

CONST

+

CONST

CONST

−

CONST

UW CSE401/501m-25sp

• Load

✦ assume we have a register r0 that always holds 0 

- LOAD	r*	<-	M[e	+	c]		 		  

LOAD	r*	<-	M[e	+	c]		 		  

LOAD	r*	<-	M[r0	+	c]	 		  
LOAD	r*	<-	M[e	+	0]		 		  

⟸ READ (BINOP(+ , e, CONST(c)))
⟸ READ (BINOP(+ , CONST(c), e))
⟸ READ (CONST(c))
⟸ READ (e)

Target Patterns (3)

31

+

CONST

READ

+

CONST

READ

CONST

READ
READ

UW CSE401/501m-25sp

• Store

✦ assume we have a register r0 that always holds 0 

 

- STORE	M[e1	+	c]	<-	e2		 		  

STORE	M[e1	+	c]	<-	e2		 		  

STORE	M[r0	+	c]	<-	e			 		  

STORE	M[e1	+	0]	<-	e2		 		  

⟸ WRITE (BINOP(+ , e1, CONST(c)), e2)
⟸ WRITE (BINOP(+ , CONST(c), e1), e2)
⟸ WRITE (CONST(c), e2)
⟸ WRITE (e1, e2)

Target Patterns (4)

32

+

CONST

WRITE

+

CONST

WRITE

CONST

WRITE
WRITE

UW CSE401/501m-25sp

Intro — Major Backend Passes

What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem

Algorithms for Instruction Selection

Outline

33

UW CSE401/501m-25sp

• Goal — Recursively match / “tile” the input tree using the
provided patterns

• The cost of each tile is given by the cost model

• A tiling is a set of <node, pattern> pairs

✦ (pattern gives the shape of the tile) the input tree at

node n must match the right-hand-side of the pattern p

• A valid tiling must cover the tree

✦ For each <n, p> every node m (except n) matched by p

is covered by the tile <n, p>

✦ A valid tiling covers all nodes except the root, and no

two tiles overlap

Tree Pattern Matching — Tiles

34

UW CSE401/501m-25sp

• Goal — Recursively match / “parse” the input tree using
the provided tree grammar rules

• Works very similar to parsing theory from earlier on!

• e.g. we can use LR parsing to do instruction selection

• One key point — different grammatical classes 
(i.e. non-terminals)

✦ In our example low-level IR, there are only expressions

✦ In general, we want to support ISAs/IRs with different

integer/floating-point register types

✦ Patterns/productions can only “plug together” where

they agree on these “types”

Tree Pattern Matching — Parsing

35

UW CSE401/501m-25sp

• Maximal Munch (Greedy)

✦ Walk the input IR tree from the top-down

✦ Match the largest possible tile at each step

(corresponds to all ISA instructions having equal cost)

• Dynamic Programming

✦ Process the tree bottom-up

✦ Assign costs to each sub-tree by trying each possible

matching pattern and looking up the cheapest solution
to sub-problems/sub-trees (i.e. dynamic programming)

Two Major Algorithm Styles

36

UW CSE401/501m-25sp

• a[i] := x (assume i in register/temp and a,x on stack)

Example Tree Match

37

+

×

TEMP i CONST 4

WRITE

READ

TEMP fp

+

CONST a

READ

TEMP fp

+

CONST x

UW CSE401/501m-25sp

• a[i] := x (assume i in register/temp and a,x on stack)

Example Tree Match

38

+

×

TEMP i CONST 4

WRITE

READ

TEMP fp

+

CONST a

READ

TEMP fp

+

CONST x

1

2

3 4

5

6

7 8

9

UW CSE401/501m-25sp

• Given a tiled tree, to generate code

✦ Do a post-order walk of the tiles

✦ Each tile generates a code sequence after you’re done

visiting it

✦ Intermediate values (where the tiles are connected)

correspond to newly named temporaries/registers

Generating Code

39

UW CSE401/501m-25sp

Example Tree Match

40

+

×

TEMP i CONST 4

WRITE

READ

TEMP fp

+

CONST a

READ

TEMP fp

+

CONST x

1

2

3 4

5
6

7 8

9

2	LOAD		r1	<-	M[fp	+	a]

4	ADDI		r2	<-	r0	+	4

5	MUL			r3	<-	i	*	r2

6	ADD			r4	<-	r1	+	r3

8	LOAD		r5	<-	M[fp	+	x]

9	STORE	M[r4	+	0]	<-	r5

