Lecture Q:

Instruction Selection
(Backend 1)

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein



Administrivia

e Compiler codegen (due last night)
+ If you have late days and want to fix bugs...
* Project Reports (due Tuesday, no late days allowed)

e HW4 is out now, (due Thursday, standard late days apply)



Outline

Intro — Major Backend Passes
What Real CPUs Do

A Low-Level IR to Work With

The Instruction Selection Problem
Algorithms for Instruction Selection
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Outline

Intro — Major Backend Passes



Our Compiler Journey

Front-End of the Compiler

Instr. 3AC/
Select. ASM

Back-End of the Compiler

Instr.
Sched.

3AC/
ASM

Reg.
Alloc.
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Save the Hard Problems for Last

* The front-end should work very quickly
+ Scanner is O(n), Parseris O(n)
+ Checking is O(n) (or maybe O(nlog n))
e Dataflow, SSA, optimization can be O(nz) or worse, but
Is usually much closer to linear time
 Backend
+ Instruction Selection — fast (naive) or NP-hard
+ Instruction Scheduling — NP-hard
+ Register Allocation — NP-hard
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IRs for the Backend

* Generally some kind of three-address code (BAC)
+ I < T1,0p Iy

+ Low-level IR — either assembly or just above
assembly; objects and other high-level features should
be gone by this point

e (Often) Focus on basic blocks
+ If BAC is SSA, then this implies a dataflow DAG

e Assume “enough” (= o0) registers, as in SSA

+ Change to a finite number of registers during Reg.
Allocation
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1. Instruction Selection

e Goal — Map from a machine/target-independent IR into
machine/target-specific assembly code

 Assume that we have already decided how objects on the
heap/stack will be stored/laid-out, and code shape has
been determined

+ i.e. middle optimizations are complete

* The problem — in general, an assembly instruction (in
the output) corresponds to one or more low-level
machine-independent operations (from the input)

+ How do we optimally group input operations into
specific assembly instructions?

8
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2. Instruction Scheduling

e Goal — In what order should the instructions be
executed? (usually, within a basic block)

e Fundamental Tradeoffs!

+ Latency — loads and stores take many cycles; we need
to schedule other instructions to do while we’re waiting

+ Parallelism — the processor can compute some
instructions at the same time if we stick them nearby

+ Locality — want to minimize the number of live
registers that we need at any point in the sequence

e @Given a sequence of instructions, how should they be
reordered to navigate the above tradeoffs?

9
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3. Register Allocation

e Goal — Go from using oo registers down to K registers

e The Good — As long as we use less than K registers,
we’re fine (all such solutions are equally good)

e The Bad — If we need more than K registers, we have to
iInsert additional loads & stores, called register spilling

e The Ugly — Different solutions to Instruction Selection
and Scheduling require different numbers of registers

+ That is, there’s a phase ordering problem for all of the
backend passes

+ If registers spill, run a second instruction scheduling
pass afterwards to account for new loads/stores

10
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Conventional Wisdom

e Even though these three problems are interdependent, we
can still do pretty well by solving them independently

e |nstruction Selection

+ tree pattern matching + cost problem

+ Still oo registers / SSA
e |nstruction Scheduling

+ Within a block, use a list scheduling algorithm

+ If not good enough, we use tricks to expose bigger blocks
* Register Allocation

+ Use a graph coloring algorithm

11



Outline

What Real CPUs Do
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Intel Sunny Cove Microarchitecture
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Sunny Cove Front End

MOP = Macro Op (CISC, i.e. x86)

Instruction| '
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Sunny Cove Execution Engine
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Modern Out-of-Order Processors

» CPUs (especially x86 CPUs) will undo and redo all of the
work the backend does! What?!?! Why even bother?

+ Instruction Selection — x86 processors have to support
legacy instructions, hence translation; choice of
instruction still matters for performance

+ Register Renaming — If you can'’t fit everything into the
16 x86-64 reqisters, your program still has to spill, even
If there are many more microarchitectural registers

+ Instruction Scheduling — the CPU can only reorder
Instructions within a limited window, so order still
roughly matters (and affects register usage, etc.)

16
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Why Do CPUs Do All This?

* Performance! (well duh, but...)
e Qut-of-Order Cores

+ Memory latencies are unpredictable — dynamically
rescheduling the instruction stream is fundamentally
more effective than any static schedule

* In-Order Cores

+ If you start stripping this stuff away, (energy efficiency!)
then the quality of static scheduling, instruction

selection and register allocation becomes much more
important!

+ (very important for low-power & accelerators)

17
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Takeaways for Compiler Writing

* The cost model is (always) very wrong

e Some false claims

+ a program that executes fewer instructions will run
faster

+ Minimizing register usage is always better than using
more registers

+ Maximizing the amount of work that can be done in
parallel is always better than not doing that

* Biggest Costs — loads, stores, cache misses, no
instruction-level parallelism to exploit

18
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A Low-Level IR to Work With
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A Low-Level IR”

Expressions Statements
e .:= CONST(int) s .:= MOVE(tname, e)
| TEMP(tname) | WRITE (e, e,)
(value of register w/this name) (write e, to addr. e,)
| BINOP(op, e, e,) SEQ(s, 5,)
| READ(e) LABEL(Iname)

(read from mem. addr. e)

| CALL(f, e, ...,e,) JUMP(Iname)

CJUMP(op, e, e,,

[name,, [name,)
(e.g. if e; < e,, jump to [name,,
otherwise jump to Iname,)

20 *This Example IR is adapted from Appel
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Low-Level IR Example (1)

* Read a local variable at a known offset -16 from the
frame pointer fp, and assign it to temporary x

+ Linear Code
MOVE (x, READ (BINOP(+, TEMP(fp), CONST(~16)))

+ Tree Diagram MOVE

\
X READ

|
N
fp ~1

6

21
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Low-Level IR Example (2)

e Copy a 32-bit integer from x[k] to y[K]

+ Linear Code
WRITE <BINOP (+, TEMP(y), BINOP( X , TEMP(k), CONST(4))),

READ (BINOP (+, TEMP(x), BINOP( x , TEMP(k), CONST(4))) ))

+ Tree Diagram WRITE

\
- READ

/+\>< |
/N /\
k 4

/\

Y

22
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Linear IR as Trees or DAGS

e |[f we have SSA, trees will be much shorter

* However, SSA in a basic block can be interpreted as a
DAG (directed acyclic graph)

 Two possible ways to proceed

+ Use an instruction selection algorithm designed for
DAGs

+ Use an instruction selection algorithm designed for
trees and adapt it to DAG structure

23



A Target Language

Instructions

ADD rl
SUB rl
MUL rl
ADDI r1l
SUBI rl
LOAD rl

<_

r2 + r3

r2 - r3

r2 * r3

r2 + c

r2 - c
Mem[r2 + c]

STORE Mem[rl + c] <- r2
// jumps, calls, etc.

// omitted for simplicity

24

UW CSE401/501m-25sp



Outline

The Instruction Selection Problem
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The Instruction Selection Problem

* |n most low-level IRs, there are many possible code
seguences that implement the input “low-level IR” code
correctly

+ e.g. set %rax to 0 on x86-64

movqg $0,%rax salg 64,%rax
subqg %rax,%rax shrq 64,%rax
xorq %rax,srax imulg $0,%rax

+ Other (esp. CISC) machine instructions do many things

at the same time, e.g. x86 addressing modes
movq offset(%rbase, %rindex, scale), %rdst

 So which instructions should we use & in what way?

26
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Instruction Selection Criteria

 Recall — Why pick one selection over another?

+ Fastest Execution, Smallest Code, Minimal Power
Consumption, Reduce Memory Traffic, ...

* As we discussed earlier, almost impossible to model this
accurately. (so don’t try too hard to be accuratel)

+ Simple answer — Each instruction has cost 1

+ Slightly less bad — maintain a table of costs for each
instruction (e.g. loads and stores have higher cost;
divide higher than addition, etc.)

27
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Defining Patterns

* We can specify the “meaning” of target instructions by
describing potential patterns to match

 Each pattern has a target instruction on the left with
holes and a source (low-level IR) tree on the right using
those same holes

+ exception — the target code on the left designates a
special position * as the “result” (assigned a new name)

* e.g.
ADDI r* <- e + ¢ <= BINOP(+ ,CONSI(c),e)

28
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Patterns for Example Targeu’vcm(1)

e Arithmetic

o — TEMP(r)
_ ADD r* <- el + e2 <= BINOP(+,e;,e,)—— /+\

X
- MUL r* <- el X e2 <= BINOP(X,ej,e) = / \

- SUB and DIV similarly

29
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Patterns for Example Target (1)

* Immediate Instructions /+\
+ assume we have a register r0 that always holds 0 CONST

vV
BINOP( + ,e, CONST(c))

BINOP( + ,CONST(c),e)
CONST(c) A

- ADDI r* <- e + ¢
ADDI r* <- e + C
ADDI r* <- ro + c

(I

CONST

- SUBI r* <- r - c &= BINOP(—,e,c)

N
TN

CONST

30



Target Patterns (3)

e | oad

+ assume we have a register r0 that always holds 0

UW CSE401/501m-25sp

READ
|

N

CONST
vV

- LOAD r* <- M[e + c] <= READ (BINOP(+ e, CONST(c)))
LOAD r* <- M[e + c] <= READ (BINOP(+ ,CONST(c),e))
LOAD r* <- M[r@ + c] <= READ (CONST(c))

LOAD r* <- M[e + 9] <= READ (e)

A

A

READ

READ

CONST

31
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READ
|

_|_
/N

CONST
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Target Patterns (4)

WRITE
e Store YRR
_|_
+ assume we have a register r0 that always holds 0 / AN
CONST
vV
- STORE M[el + c] <- e2 <= WRITE (BINOP(+,e;, CONST(c)),e,)
STORE M[el + c] <- e2 <= WRITE (BINOP(+,CONST(c),e,),e,)
STORE M[r@ + c] <- e <= WRITE (CONST(c),e,) /\
STORE M[el + @] <- e2 <= WRITE (e, ¢,)
/ WRITE
WRITE +

/ \ WRITE y

/|| consT
CONST

32
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Algorithms for Instruction Selection

33
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Tree Pattern Matching — Tiles

e Goal — Recursively match / “tile” the input tree using the
provided patterns

* The cost of each tile is given by the cost model
 Atiling is a set of <node, pattern> pairs

+ (pattern gives the shape of the tile) the input tree at
node n must match the right-hand-side of the pattern p

e A valid tiling must cover the tree

+ For each <n, p> every node m (except n) matched by p
IS covered by the tile <n, p>

+ A valid tiling covers all nodes except the root, and no
two tiles overlap

34
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Tree Pattern Matching — Parsing

e Goal — Recursively match / “parse” the input tree using
the provided tree grammar rules

* Works very similar to parsing theory from earlier on!
* e.g. we can use LR parsing to do instruction selection

* One key point — different grammatical classes
(i.e. non-terminals)

+ In our example low-level IR, there are only expressions

+ In general, we want to support ISAs/IRs with different
integer/floating-point register types

+ Patterns/productions can only “plug together” where
they agree on these “types”

35
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Two Major Algorithm Styles

e Maximal Munch (Greedy)
+ Walk the input IR tree from the top-down

+ Match the largest possible tile at each step
(corresponds to all ISA instructions having equal cost)

 Dynamic Programming
+ Process the tree bottom-up

+ Assign costs to each sub-tree by trying each possible
matching pattern and looking up the cheapest solution
to sub-problems/sub-trees (i.e. dynamic programming)

36



Example Tree Match

e ali] :=x (assume i in register/temp and a,x on stack)

WRITE

I

READ

+ \
/ "\ +
READ X / \
TEMP fp  CONST x
\ /N
+\ TEMP i CONST 4

TEMP fo  CONST a

37
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Example Tree Match

e ali] :=x (assume i in register/temp and a,x on stack)

TEMP fo| CONST a

38
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Generating Code

* QGiven a tiled tree, to generate code
+ Do a post-order walk of the tiles
+ Each tile generates a code sequence after you’re done
visiting it
+ Intermediate values (where the tiles are connected)
correspond to newly named temporaries/registers

39
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Example Tree Match

2 LOAD rl1 <- M[fp + a]
4 ADDI r2 <- ro + 4

5 MUL r3 <- 1i * r2

6 ADD r4 <- rl + r3

8 LOAD r5 <- M[fp + X]
9 STORE M[r4 + @] <- r5

40



