Lecture 0:

Dataflow Analaysis

CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

Outline

- **Constant Analysis Revisited**
- Example Available Expressions for CSE
- **Dataflow in General**
- **Liveness Analysis**
- Other Analyses
- Optimize! CSE, Copy Propagation, DCE

Outline

Constant Analysis Revisited

Example — Available Expressions for CSE

Dataflow in General

Liveness Analysis

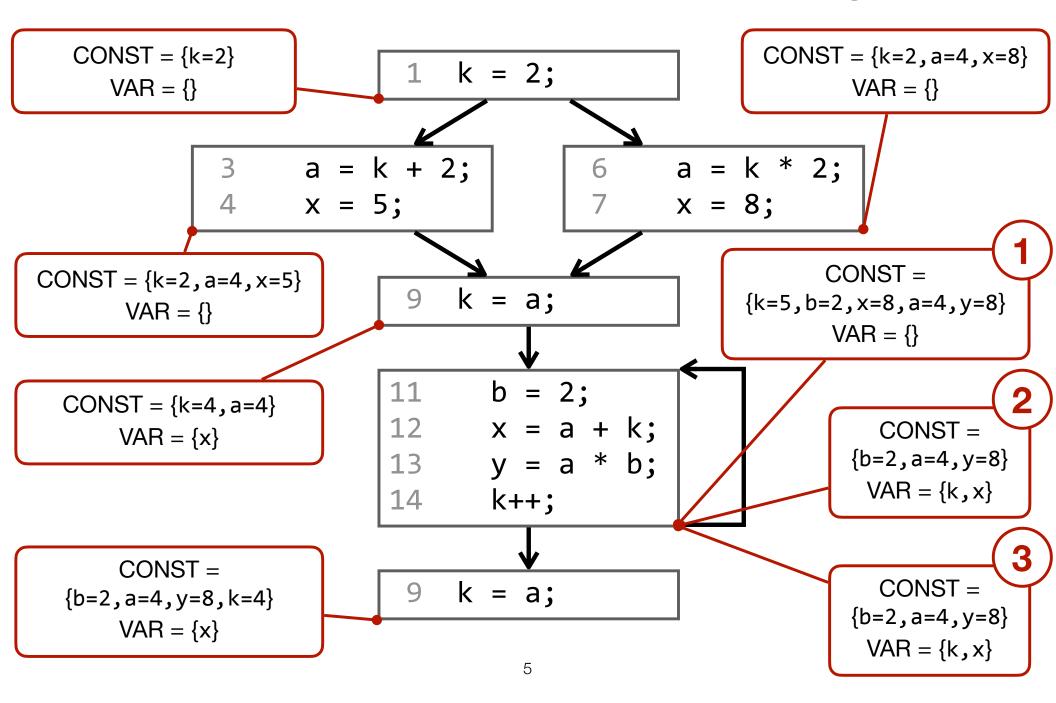
Other Analyses

Optimize! CSE, Copy Propagation, DCE

Example — Constant Propagation

```
k = 2;
                            1 k = 2;
  if (...) {
a = k + 2;
                                           a = k * 2;
                    a = k + 2;
  x = 5;
                                           x = 8;
                      x = 5;
  } else {
  a = k * 2;
  x = 8;
                            9
                              k = a;
  k = a;
  while (...) {
10
                           11
                                 b = 2;
11
  b = 2;
                           12 	 x = a + k;
12 x = a + k;
                           13 y = a * b;
13 y = a * b;
                                 k++;
14 k++;
                                           Back-Edge!
15 }
                            9 k = a;
16
  print(a+x);
```

Example — Constant Propagation



Dataflow Basics — Facts

- Keep track of facts that are true after (or before) a basic block is done executing
 - CONST a set of all variables that are constant along with the constant value they have
 - VAR a set of all variables that could have more than one value

Dataflow Basics — Transitions

- At each basic block, specify how to compute facts that are true after the block based on facts that are true before the block
 - Can extrapolate from a single statement
 - ◆ e.g. for x = RHS if every variable in the RHS is CONST, then x becomes CONST with the computed value. If any variable in the RHS is VAR, then x becomes VAR.
 - * (We'll show more precise equations for other analyses)

Dataflow Basics — Merging

- Whenever we have facts incoming from more than one other basic block, we have to merge the facts
 - In our example, the constants after merging paths must be constant with the same value on all incoming paths

$$CONST_{merge} = \bigcap_{b} CONST(b)$$

 in our example, any variable with potentially different values becomes VAR

$$VAR_{merge} = \left(\bigcup_{b} VAR(b) \cup \left(CONST(b) - CONST_{merge}\right)\right)$$

Note: we need to convert from a set of entries like "x=3" to a set of entries like "x" here

Dataflow Basics — Iterating

- The master algorithm
 - Just keep propagating facts around the CFG
 - Transform facts before basic blocks into facts after basic blocks using the transition rules
 - Merge incoming facts (i.e. facts that are true after preceding basic blocks) to update facts true before a basic block
 - Repeat in any order until facts stop changing

Outline

Constant Analysis Revisited

Example — Available Expressions for CSE

Dataflow in General

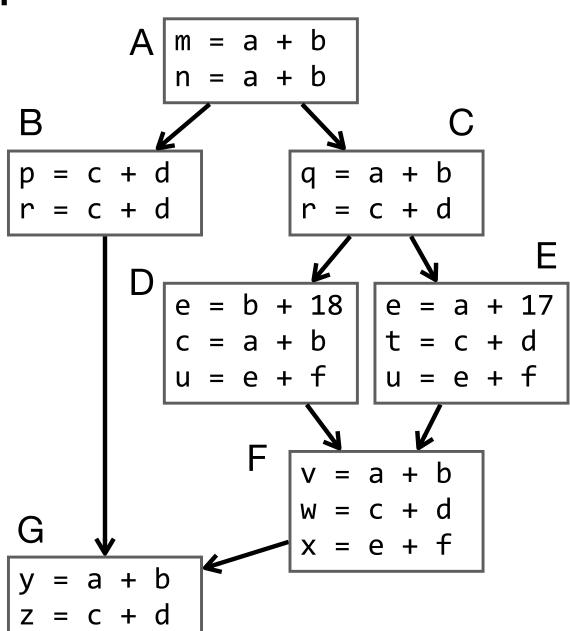
Liveness Analysis

Other Analyses

Optimize! CSE, Copy Propagation, DCE

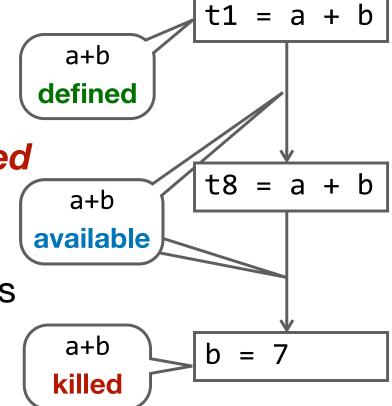
Common Subexpression Elimination

- Goal use dataflow analysis to find common subexpressions
- Idea calculate
 available expressions
 at the beginning of each basic block
- If an expression is available, then we can replace it by copying the already computed value...



"Available" & Other Terms

- We say an expression e is defined at a program point p (aka. definition site) immediately following its computation
- We say that an expression e is killed at a program point p (aka. kill site) immediately following the (re-)definition of one of its operands
- We say that an expression e is
 available at a program point p if
 every path leading to p contains a
 prior definition of e, and e is not killed
 between that definition site and p.



Available Facts

- For each block b, we define
 - ◆ AVAIL(b) the set of expressions available
 - $AVAIL_{in}(b)$ on entry to b, $AVAIL_{out}(b)$ on exit from b
 - + KILL(b) the set of expressions **killed** in b
 - i.e. all expressions in the program that contain an operand whose value is changed/set by \boldsymbol{b}
 - + DEF(b) the set of expressions **defined** in b and not subsequently killed in b

Facts for Basic Blocks

- Consider one statement $s = (x \leftarrow y \ op \ z)$
 - + $DEF(s) = \{y \ op \ z\}$
 - + KILL(s) set of all expressions with x as an operand
 - Note both of these are defined entirely locally
- $AVAIL_{out}(s) = DEF(s) \cup (AVAIL_{in}(s) KILL(s))$
 - The equation for the available set links before and after the statement
- For a whole basic block, just apply this idea iteratively in the block to define DEF(b), KILL(b), and $AVAIL_{out}(b)$

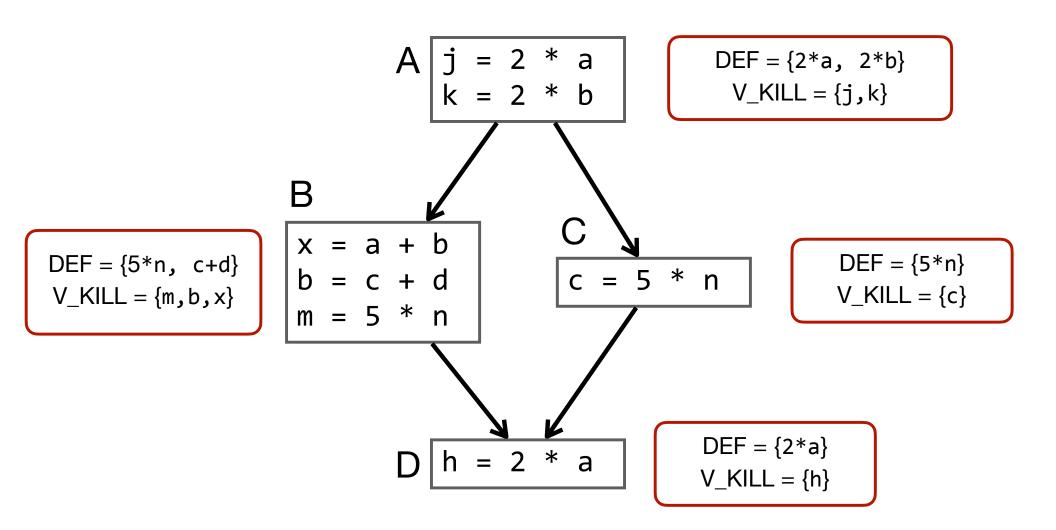
Computing KILL and DEF (1)

- First, figure out which variables are killed, and which expressions are defined
- For block $b = s_1; s_2; \dots; s_n$ $V_KILL(b) = \emptyset$ // variables killed in b, not expr $DEF(b) = \emptyset$ for k = n to 1 // note iterating backwards $let (x \leftarrow y \text{ op } z) = s$ $V_KILL(b) = V_KILL(b) \cup \{x\}$ if $(y \notin V_KILL(b) \text{ and } z \notin V_KILL(b))$ $DEF(b) = DEF(b) \cup \{y \text{ op } z\}$ // i.e. neither y nor z is killed after this point in b

Computing KILL and DEF (2)

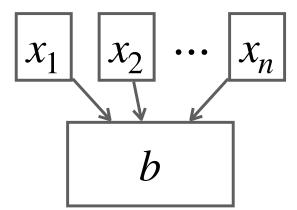
- How do we compute KILL? (rather than V_KILL)
 - Collect all expressions in the program (really, in the method since this is an *intra*-procedural analysis)
 - If x is in V_KILL, then add every expression with x as an operand to KILL; repeat for all variables in V_KILL
- *Alternately*, we can just store V_KILL, and then compute $\left(AVAIL_{in}(b) KILL(b)\right)$ by removing all expressions from $AVAIL_{in}(b)$ that have an operand in KILL(b)

Example — Compute DEF & KILL



Merging Available Facts

• Now suppose we have multiple blocks \boldsymbol{x} that all have CFG edges pointing at a basic block \boldsymbol{b}



- We need to give a rule for how to correctly combine the facts about what's $AVAIL_{out}(x)$ into what's $AVAIL_{in}(b)$
- The rule (see def. of available) is that an expression is only available at a point p if it is available on all paths to that point. Or in terms of set equations, we have

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} AVAIL_{out}(x)$$

Putting it all together

- Step 1 Compute a CFG for your code
- Step 2 Compute DEF & KILL sets for basic blocks
- Step 3 iteratively compute AVAIL sets using two rules

$$AVAIL_{out}(b) = DEF(b) \cup (AVAIL_{in}(b) - KILL(b))$$

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} AVAIL_{out}(x)$$

or we can combine the two rules

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup (AVAIL_{in}(x) - KILL(x))$$

Terminate when AVAIL sets stop changing

Iteratively Compute?

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup (AVAIL_{in}(x) - KILL(x))$$

$$DEF = \{2^*a, 2^*b\}$$

$$V_{KILL} = \{j, k\}$$

$$V_{KILL} = \{m, b, x\}$$

$$DEF = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2^*a, 2^*b\}$$

$$V_{KILL} = \{j, k\}$$

$$C$$

$$C = 5^*n$$

$$DEF = \{2^*a\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2^*a\}$$

$$V_{KILL} = \{h\}$$

processing

$$AVAIL_{in}(b) = \bigcap_{x \in \text{pred}(b)} DEF(x) \cup \left(AVAIL_{in}(x) - KILL(x)\right)$$

$$DEF = \{2^*a, 2^*b\} \\ V_KILL = \{j, k\}$$

$$V_KILL = \{m, b, x\}$$

$$DEF = \{5^*n, c+d\} \\ V_KILL = \{m, b, x\}$$

$$DEF = \{5^*n\} \\ V_KILL = \{c\}$$

$$DEF = \{5^*n\} \\ V_KILL = \{c\}$$

$$DEF = \{5^*n\} \\ V_KILL = \{c\}$$

$$DEF = \{2^*a\} \\ V_KILL = \{h\}$$

processing

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup \left(AVAIL_{in}(x) - KILL(x)\right)$$

$$A \quad j = 2 * a \\ k = 2 * b$$

$$AVAIL_{in} = \{j, k\}$$

$$V_{KILL} = \{j, k\}$$

$$V_{KILL} = \{m, b, x\}$$

$$V_{KILL} = \{m, b, x\}$$

$$DEF = \{5*n\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{5*n\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2*a, 2*b\}$$

$$V_{KILL} = \{j, k\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2*a\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2*a\}$$

$$V_{KILL} = \{h\}$$

$$AVAIL_{in} = \{5*n\}$$

$$AVAIL_{in} = \{5*n\}$$

$$AVAIL_{in}(b) = \bigcap_{x \in \operatorname{pred}(b)} DEF(x) \cup \left(AVAIL_{in}(x) - KILL(x)\right)$$

$$A \quad j = 2 * a \\ k = 2 * b$$

$$AVAIL_{in} = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$V_{KILL} = \{m, b, x\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2^*a\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2^*a\}$$

$$V_{KILL} = \{h\}$$

$$AVAIL_{in} = \{5^*n\}$$

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup \left(AVAIL_{in}(x) - KILL(x)\right)$$

$$A \quad j = 2 * a \\ k = 2 * b$$

$$AVAIL_{in} = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{2^*a, 2^*b\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{2^*a, 2^*b\}$$

$$AVAIL_{in} = \{5^*n\}$$

$$V_{KILL} = \{h\}$$

$$AVAIL_{in} = \{5^*n\}$$

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup \left(AVAIL_{in}(x) - KILL(x)\right)$$

$$A \quad j = 2 * a \\ k = 2 * b$$

$$AVAIL_{in} = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$b = c + d \\ m = 5 * n$$

$$DEF = \{5^*n, c+d\}$$

$$V_{KILL} = \{c\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{5^*n, c+d\}$$

$$V_{KILL} = \{c\}$$

$$DEF = \{2^*a, 2^*b\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$AVAIL_{in} = \{5^*n, 2^*a\}$$

$$AVAIL_{in} = \{5^*n, 2^*a\}$$

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup (AVAIL_{in}(x) - KILL(x))$$

So, the common subexpressions are...?

$$A j = 2 * a k = 2 * b$$

DEF = {2*a, 2*b}
V_KILL = {j,k}

$$AVAIL_{in} = \{\}$$

DEF =
$$\{5*n, c+d\}$$

V_KILL = $\{m,b,x\}$

AVAIL_{in} =
$$\{2^*a, 2^*b\}$$

В

$$x = a + b$$

$$b = c + d$$

$$m = 5 * n$$

C \

$$c = 5 * n$$

 $\mathsf{DEF} = \{5*n\}$

$$V_KILL = \{c\}$$

$$AVAIL_{in} = \{2*a, 2*b\}$$

in worklist

Dh = 2 * a

$$DEF = \{2*a\}$$

$$V_KILL = \{h\}$$

AVAIL $_{in} = \{5^*n, 2^*a\}$

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup \left(AVAIL_{in}(x) - KILL(x)\right)$$

$$A \quad j = 2 * a \\ k = 2 * b$$

$$AVAIL_{in} = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$V_{KILL} = \{m, b, x\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{5^*n, c+d\}$$

$$V_{KILL} = \{m, b, x\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$C = 5 * n$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$AVAIL_{in} = \{2^*a, 2^*b\}$$

$$DEF = \{5^*n\}$$

$$V_{KILL} = \{c\}$$

$$V_{KILL} = \{h\}$$

$$AVAIL_{in} = \{5^*n\}$$

$$AVAIL_{in} = \{5^*n\}$$

$$AVAIL_{in} = \{5^*n\}$$

$$AVAIL_{in} = \{5^*n\}$$

Termination

Consider the update equation for AVAIL

$$AVAIL_{in}(b) = \bigcap_{x \in pred(b)} DEF(x) \cup (AVAIL_{in}(x) - KILL(x))$$

- This equation has a property called monotonicity
 - + If $AVAIL_{in}(x)$ gets larger, then $AVAIL_{in}(b)$ can't shrink
 - As we propagate information, AVAIL sets will only get bigger
 - ◆ And there's a finite set of expressions in a method, so...
- Ahh, another fixed-point algorithm...

Outline

Constant Analysis Revisited

Example — Available Expressions for CSE

Dataflow in General

Liveness Analysis

Other Analyses

Optimize! CSE, Copy Propagation, DCE

Applications of Dataflow Analysis

- Constant Propagation & Available Expressions are examples of dataflow analyses
- There are many other dataflow analyses that all share a common algorithmic framework and theoretical foundation
- Dataflow analyses can allow us to prove the conditions that are necessary to ensure optimizations are safe (i.e. preserve equivalence)
- Dataflow analyses can also be used to detect properties that prove absence of certain errors or suggest likelihood of potential problems (i.e. enhance Checking behavior)

Dataflow for Checking & Beyond

- e.g. the Checker Framework for Java (developed by UW prof. Mike Ernst, and team)
 - used on all Java code at major software companies (Google, Meta, Amazon, Uber, et al.)
- Example analyses
 - nullable/non-nullable (this variable cannot be null)
 - initialized fields (data fields should be initialized)
- More generally, dataflow analyses are subsumed by more powerful program analysis frameworks: static analysis & abstract interpretation

Dataflow, Abstractly

- All of these algorithms involve sets of facts about each basic block b
 - IN(b) facts true on entry to b
 - OUT(b) facts true on exit from b
 - + GEN(b) facts created and not killed in b
 - + KILL(b) facts killed in b
- Given such sets, we have an equation like
 - **+** OUT(b) = GEN(b) ∪ (IN(b) KILL(b))
- We can solve these equations iteratively for all blocks by using a fixed-point algorithm

Dataflow, Variations

- There are both dataflow analyses that run forwards and backwards, depending on how we define our facts
 - + Forward: OUT(b) = GEN(b) ∪ (IN(b) KILL(b))
 - → Backward: IN(b) = GEN(b) U (OUT(b) KILL(b))
- We can also merge facts using two basic methods
 - → facts true on all paths: IN(b) = OUT(x)
 - facts true on any path: $IN(b) = \bigcup_{x} OUT(x)$

Implementation Efficiency

- Encoding Sets
 - We can use set<...> data structures. This is simple, but rarely efficient, especially when the largest possible set is quite small. (e.g. less than 64 or 128 items)
 - Given a fixed set (e.g. of possible expressions) assign a number to each possible element of the set. Then use a bit-vector to represent the set; set operations can now be implemented by bit-logic
- Worklist priority forward analyses should prefer to process the CFG from start to finish; backwards analyses should prefer to process the CFG in the opposite order

Outline

Constant Analysis Revisited

Example — Available Expressions for CSE

Dataflow in General

Liveness Analysis

Other Analyses

Optimize! CSE, Copy Propagation, DCE

Live Variable Analysis

- A variable v is live at a program point p iff. there is some path from p to a use of v, along which v is not redefined.
- Applications
 - Register allocation only live variables need to be assigned a register
 - Dead Code Elimination if a variable is not live immediately after being written, then it doesn't need to be computed
 - Detecting uninitialized variables if live at declaration (before initialization) then it might be used uninitialized
 - ◆ Better SSA construction see next lecture

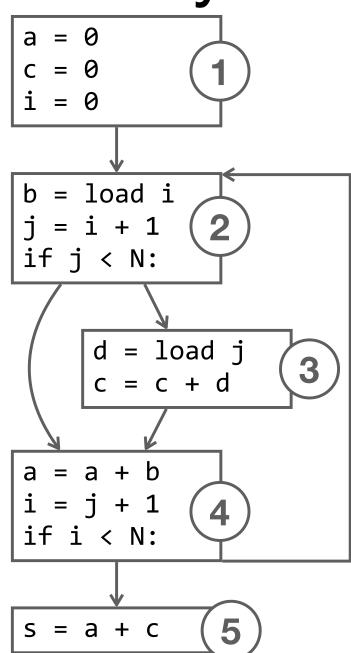
Liveness Equations

- For each block b, define
 - + USE[b] variables used in b before any redefinition
 - + DEF[b] variable defined in b
 - + IN[b] variables live on entry to b
 - + OUT[b] variables live on exit from b
- Update equations
 - + $IN[b] = USE[b] \cup (OUT[b] DEF[b])$

$$\begin{array}{c}
\bullet \quad OUT[b] = \bigcup_{x \in \text{succ}[b]} IN[x]
\end{array}$$

Example — Liveness Analysis

```
a = 0
c = 0
i = 0
do
  b = load i
  j = i + 1
  if j < N:
    d = load j
    c = c + d
  a = a + b
  i = j + 1
while i < N
s = a + c
```

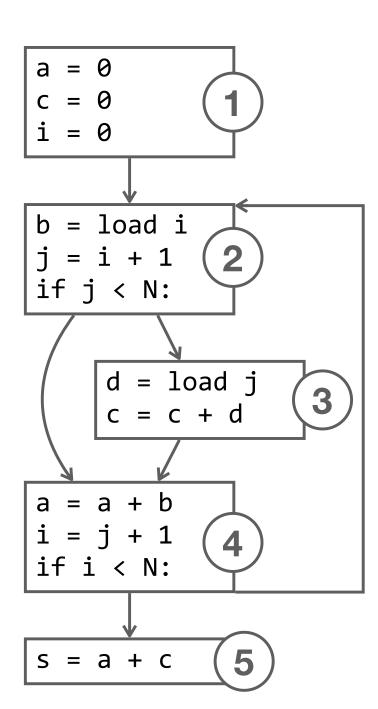


Calculation

 $\bullet \quad IN[b] = USE[b] \cup (OUT[b] - DEF[b])$

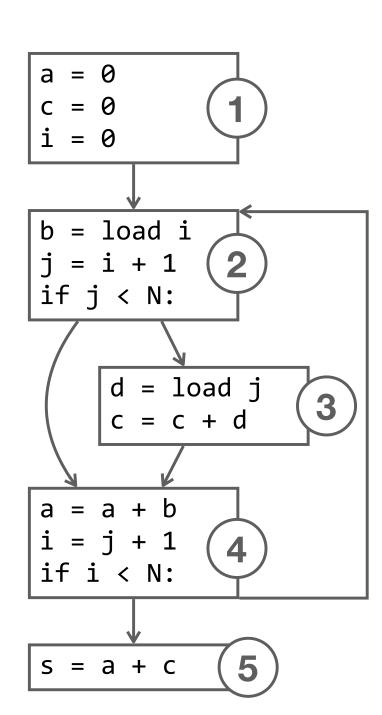
 $OUT[b] = \bigcup IN[x]$

$x \in \operatorname{succ}[b]$			iter 1		iter 2	
b	USE	DEF	IN	OUT	IN	OUT
1						
2						
3						
4						
5						



Calculation

			iter 1		iter 2	
b	USE	DEF	IN	OUT	IN	OUT
1		a,c,i	N	a,c, i,N	N	a,c, i,N
2	N,i	b,j	a,c, i,N	a,c,b, j,N	a,c, i,N	a,c,b, j,N
3	j,c	d,c	a,c,b, j,N	a,c,b, j,N	a,c,b, j,N	a,c,b, j,N
4	a,b, j,N	a,i	a,c,b, j,N	a,c	a,c,b, j,N	a,c,j, N
5	a,c	S	a,c		a,c	



Equivalent Formulations

- If you read the textbook & other sources, you'll find different choices of terminology. e.g. this is also *liveness*
- Facts
 - + USED(b) variables used in b prior to any def in b
 - + NOTDEF(b) variables not defined in b
 - + LIVE(b) variables live on exit from b
- Equation

$$LIVE(b) = \bigcup_{s \in succ(b)} USED(s) \cup (LIVE(s) \cap NOTDEF(b))$$

Outline

Constant Analysis Revisited

Example — Available Expressions for CSE

Dataflow in General

Liveness Analysis

Other Analyses

Optimize! CSE, Copy Propagation, DCE

Reaching Definitions

- A definition (statement) d of some variable v reaches another statement s iff. s reads the value of v and there is a path from d to s that does not redefine v
 - Requires that we assign numbers/identifiers to each possible definition statement d
- Applications
 - Find all of the possible definition points for a variable in an expression

Facts & Eqs — Reaching Defs

- Facts
 - + DEFOUT(b) set of definitions in b that reach the end of b (i.e. without being redefined)
 - + DEFKILL(b) set of definitions killed by redefining a variable in b (possibly stored by variable, instead of def)
 - \star *REACH(b)* set of definitions that reach b
- Equation

$$\underset{p \in \text{pred}(b)}{\textit{REACH}(b)} = \bigcup_{p \in \text{pred}(b)} \textit{DEFOUT}(p) \cup \left(\textit{REACHES}(p) - \textit{DEFKILL}(p) \right)$$

Very Busy Expressions

- An expression e is considered very busy at some point p
 if e is evaluated and used along every path that leaves p,
 and evaluating e at p would produce the same result as
 evaluating it at the original locations.
- Applications
 - * Code Hoisting If an expression e is very busy at p, then we can move the computation of e to p
 - Loop-Invariant Code Hoisting in particular, if we can hoist computations to outside of loops then there is a strong chance we will speed up the code

Facts & Eqs — Very Busy Expr

- Facts
 - USED(b) expressions used in b before they are killed
 - KILL(b) expressions redefined in b before they are used (likely stored as redefined variables)
 - ★ VERYBUSY(b) expressions very busy on exit from the block b
- Equation

$$\underbrace{VERYBUSY(b)}_{s \in \text{succ}(b)} = \bigcap_{s \in \text{succ}(b)} USED(s) \cup \left(VERYBUSY(s) - KILL(s)\right)$$

Dominance

- A basic block b dominates a basic block d iff. all paths to d (from the start of the CFG) must pass through b
- Applications
 - Many!
 - Detect loops
 - help perform CSE
 - help convert to SSA

Facts & Eqs — Dominance

- Facts
 - + $SELF(b) = \{b\}$
 - + $DOM_BY(b)$ set of blocks that dominate b
- Equation

$$DOM_BY(b) = \bigcap_{d \in pred(b)} SELF(d) \cup DOM_BY(d)$$

Reaching Expressions

- A mash-up of available expressions and reaching def.
- A statement $s = (z := x \ op \ y)$ reaches another statement as an expression t iff. neither x nor y are redefined along all paths from s to t
- Applications
 - We will use for CSE in a second
- Omit Equations

Outline

Constant Analysis Revisited

Example — Available Expressions for CSE

Dataflow in General

Liveness Analysis

Other Analyses

Optimize! CSE, Copy Propagation, DCE

Classic Common-Subexpression Elimination (CSE)

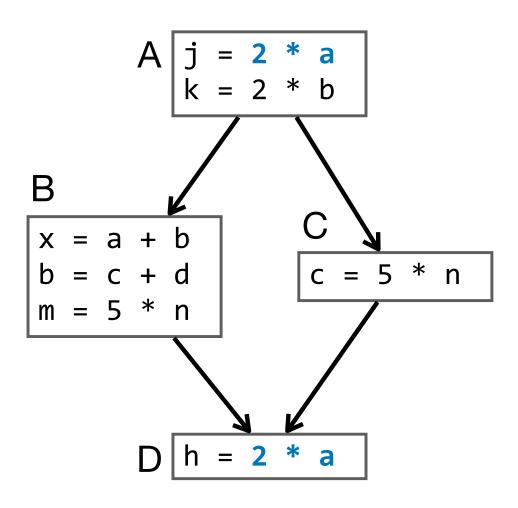
- In a statement $s = (z := x \ op \ y)$ if $x \ op \ y$ is available at s, then it does not need to be recomputed
- However, we also need to replace the common subexpression x op y with the variable from some specific definition
- Fix If there is a statement $a = (w := x \ op \ y)$ that reaches s as an expression, and the block containing a dominates the block containing s, then we can perform common subexpression elimination at s using a

Classic CSE Transformation

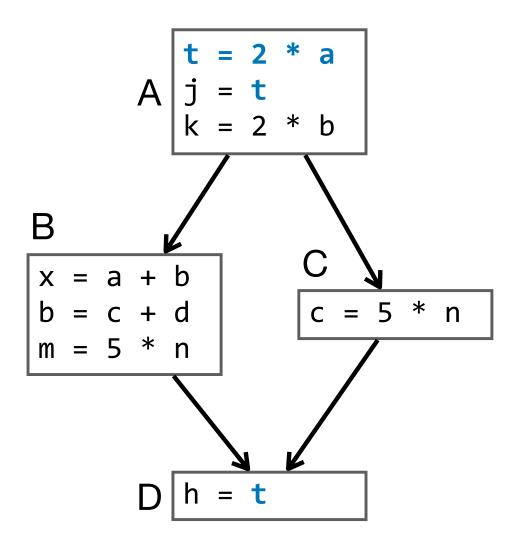
- Suppose $a = (w := x \ op \ y)$ both dominates $s = (z := x \ op \ y)$ and reaches s as an expression.
- First, create a new temporary t_i for w, and use it to rewrite the code

rely on copy propagation to remove extra assignments

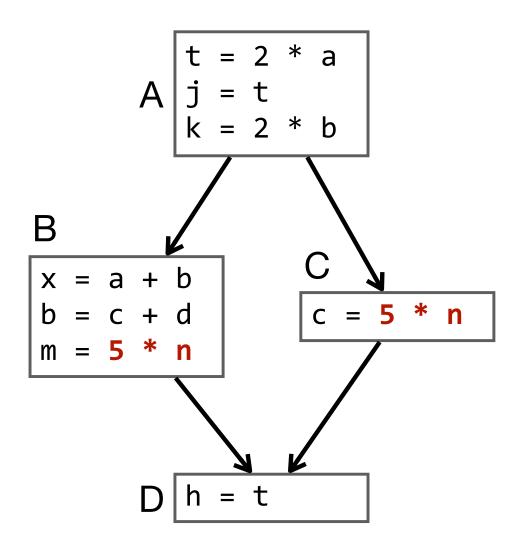
Revisiting the Example



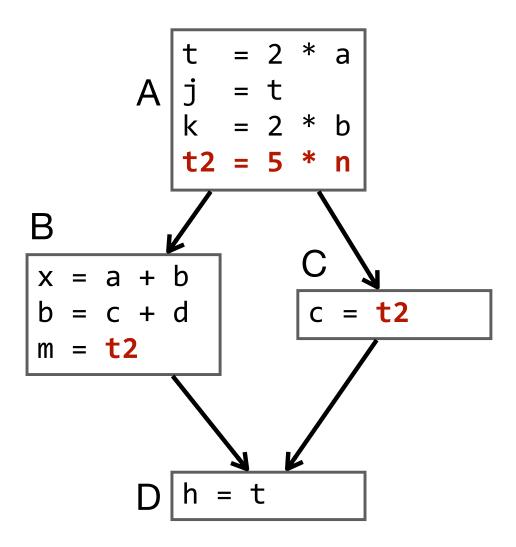
Revisiting the Example



Apply Very Busy



Apply Very Busy



Constant Propagation

an alternative method

- Suppose we have
 - * statement s = (x := c), where c is some literal
 - statement t that uses x
- Then if
 - the definition s reaches t and
 - no other definitions of x reach t,
- we can rewrite t to use c instead of x

Copy Propagation

- Similar idea to constant propagation
- Suppose we have
 - \star statement s = (x := y)
 - statement t that uses x
- Then if
 - the definition s reaches t and
 - no other definitions of x reach t,
 - there are no other definitions of y on any path from s to t
- we can rewrite t to use y instead of x

Copy Propagation Tradeoffs

- Copy propagation can expose opportunities for deadcode elimination (great!)
- But if copy propagation doesn't result in dead-code, it can increase the lifetime of a variable (and thus increase demand for registers and/or memory traffic — uh oh!)
- But copy propagation can expose other optimizations

```
a := y + z
u := y
c := u + z // w/ copy propagation becomes y + z
```

Here, copy propagation exposes a CSE opportunity

Dead Code Elimination

- Suppose we have a statement $s = (a := b \ op \ c)$
- Then if
 - * a is not live after s
- we can eliminate s
 - provided it has no implicit side effects that are visible
 - e.g. if s = (a := foo(b, c)) then we can't eliminate the statement unless the compiler can somehow prove that foo definitely doesn't have side effects

In Summary...

- Dataflow Analysis is a general framework for discovering facts about programs (i.e. is *purely* analysis)
 - Can be generalized to more powerful frameworks too
- Then, the discovered facts open up opportunities for code optimization
- Another Approach is to normalize code into certain forms without changing its meaning. Doing this can accomplish many optimizations and simplify analyses
- Next time...
 - We'll study one of the most important normal forms for code — Static Single Assignment (SSA)