
UW CSE401/501m-25sp

Lecture M:

Running MiniJava
& Bootstrapping
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

• Final part of the project — codegen — is out

✦ Due Thur. May 29 (less time than checking)

✦ Biggest hurdle to get started

- Goal get System.out.println(17) in main method
working ASAP (e.g. before the weekend)

✦ Once that’s done, look at the project page for a
suggestion of one reasonable order to add feature
support in; work incrementally and check at each stage
before you proceed

- write good tests for each stage, before starting it!

Administrivia

2

UW CSE401/501m-25sp

System Interaction & Bootstrapping

(rest in section)

Outline

3

UW CSE401/501m-25sp

• On load

✦ we need to allocate

space for a heap and
stack

✦ We need to intialize
%rsp and other reg.

• We need some way to
communicate with the OS
& outside world (e.g. to
allocate more memory)

MiniJava Programs

4

#	assembly	for	complete

#	binary	program

#	generated

#	assembly

#	code	for

#	MiniJava

#	program

Operating System

UW CSE401/501m-25sp

• Idea — let’s take advantage of the existing C runtime

• Implementation — use a small C main program that sets
up the process and then calls into the generated MiniJava
main method (as if it is a C function)

• Wrap the C standard library in custom functions to
expose I/O, malloc/calloc, etc. to the generated assembly
program.

Strategy — Bootstrap from C

5

UW CSE401/501m-25sp

• Our MiniJava compiler should generate an assembly
program (an ascii .s file) by writing the result to stdout.
We can redirect this into a file using ant or a shell.

• What assembly should we generate? see src/runtime/
demo.s in the starter project for example assembly.

Our Assembly File Format

6

				.data																#	static	data	in	asm	program

				<generated	method	tables>

				.text																#	code	segment

				.globl	asm_main						#	expose	label	to	linked	code

asm_main:																#	start	of	compiled	main

				<generated	code>

class_1$method_1:

				<generated	code>

				…

#	generated

#	assembly

#	code	for

#	MiniJava

#	program

This assembly goes in
this box in the diagram

UW CSE401/501m-25sp

• The bootstrap is a tiny C program that calls your
compiled code as if it were an ordinary C function

• Also contains functions that your assembly can call

✦ MiniJava’s “runtime library”

✦ You can add C functions if you want to

- It can be easier to write some C code than generate
a moderate/large amount of inline assembly

- e.g. do for “exit if subscript out of bounds” error

- don’t go overboard and turn everything into a call

• File — src/runtime/boot.c in project starter code

Bootstrap Program

7

UW CSE401/501m-25sp

#	include	<stdio.h>

/*	extern	=	someone	else	will	define

			the	code	for	asm_main()	*/

extern	void	asm_main();	

void	main()	{	asm_main();	}

/*	“runtime	library”	below	*/

/*	print	x	to	stdout	*/

void	put(int64_t	x)	{…}

/*	return	a	pointer	to	zero-initialized	memory	of

			at	least	nBytes,	or	return	null	on	failure	*/

char*	mjcalloc(size_t	nBytes)	{

		return	calloc(1,nBytes);

}

Bootstrap Program (sketch)

8

boot.c

compile
to

Outer

ASM

UW CSE401/501m-25sp

• In boot.c

extern	void	asm_main(); 
void	main()	{	asm_main();	}

• In generated ASM

				.globl	asm_main 
asm_main:	<generated	code>

• Why does this work?

• Key point — the name declared extern and the name
marked by .globl are the same!

✦ You can use any name, but it must be consistent

✦ However, why can’t you use main?

Linking the Two Files

9

UW CSE401/501m-25sp

• How do we get access to system functionality?

• We define functions in boot.c, e.g.

void	put(int64_t	x)	{…}

• We can call these in the usual way

✦ i.e. put arguments in the expected registers,

get result back in %rax

✦ but, no this argument (we’re calling C code)

• Generate a call to the right label, e.g. call	put

✦ The linker will resolve labels across files

• Problem — different OSes mangle names
differently…

Interfacing to “Library” Code

10

OS

boot.c

UW CSE401/501m-25sp

• What standard governs our function calls? (including
system calls)

✦ the ABI!

• On Linux, external symbols for function calls are used as-
is (xyzzy)

✦ but on Windows & x86-64 MacOS, external symbols

are “name mangled” with a leading underscore _xyzzy

• Your compiler needs to generate code that runs on attu
using Linux conventions, but feel free to support your
local machine (e.g. using a compiler switch)

System Calls — Names

11

UW CSE401/501m-25sp

• MiniJava’s “print” statement — can compile as…

<compile exp; result in %rax>

movq		%rax,%rdi		# load argument register

call		put								# call external put routine

• Note! If the stack is not properly 16-byte aligned when
calls outside your code are executed (i.e. to external C or
library code) then you can cause a runtime error (It will
cause an error on x86-64 MacOS)

System.out.println(exp)

12

UW CSE401/501m-25sp

• Pre m-series macs (Intel chips) will run x86-64 code; m-series
processors will also run it via translation, but…

✦ External labels need to start with _ (e.g. _put)

✦ %rsp must be 16-byte aligned when call is executed (should be

anyway, but Linux may let you get away with 8-byte alignment)

✦ The addressing mode leaq	label,%rax may be rejected, so

use the weird leaq	label(%rip),%rax mode instead

✦ Probably use lldb instead of gdb on a mac

✦ You may need to include .align	8 in the assembler code

before each vtable to stop linker complaints

• FINALLY, make sure that you can run your code on attu/cse vm
Linux for your final version (don’t generate external _labels)

Notes for running code on a Mac…

13

UW CSE401/501m-25sp

Lecture Section→

14

