
UW CSE401/501m-25sp

Lecture L:

Code Shape II —
OOP
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

• Midterm Results — Should be out

✦ Again, if you did not do as well as you’d hoped, take the

opportunity to reflect and figure out why. This is only a
fraction of your grade. Remember we’re here to help.

• Parser/AST feedback — if you have questions, feedback
or regrade requests, please email cse401-staff@cs and cc
your partner on all emails. It’s good to fix serious
problems before moving forward.

• Checking is DUE next Tuesday

✦ Make sure to come (w/partner) to sections this Thursday

Administrivia

2

UW CSE401/501m-25sp

• I was wrong! Lectures are not in a ratio of 1:2, but more
like 1:1, or even 2:1.

• So, we’re cutting up Wednesday in half

• No worries!

Plan for This Week + a bit

3

UW CSE401/501m-25sp

Dynamic Method Dispatch

Object Layout & Field Access

Virtual Tables, Methods, & the Rest

Outline

4

UW CSE401/501m-25sp

Dynamic Method Dispatch
Object Layout & Field Access

Virtual Tables, Methods, & the Rest

Outline

5

UW CSE401/501m-25sp

class	One	{

		int	foo;

		int	bar;

		void	setFoo()	{

				foo	=	1;

		}

		int	getFoo()	{

				return	foo;

		}

		void	setBar(int	bar)	{

				this.bar	=	bar;

		}

		int	getBar()	{

				return	bar;

		}

}

class	Two	extends	One	{

		int	bar;

		void	setFoo()	{

				foo	=	2;	bar	=	3;

		}

		int	getIt()				{	return	bar;	}

		void	resetIt()	{	super.setBar(42);	}

}

What does this program print?

6

public	class	Main	{

		public	static	void	main(String[]	args)	{

				Two	two	=	new	Two();

				One	one	=	two;

				one.setFoo();

				System.out.println(one.getFoo());

				one.setBar(17);

				two.setFoo();

				System.out.println(two.getBar());

				System.out.println(two.getIt());

				two.resetIt();

				System.out.println(two.getBar());

				System.out.println(two.getIt());

		}

}

UW CSE401/501m-25sp

Your Answer Here!

7

UW CSE401/501m-25sp

• Objects have field data and methods

• When you inherit and override data or methods, they are
no longer accessible

✦ Think of it as a “map” (like the symbol table) from field

names to data and from method names to functions

• This is subtly wrong

✦ The object still has the overriden fields (and methods)

✦ They can still be accessed indirectly, and so must be

represented

• When a field or method is accessed, we need to resolve
(dynamically or statically) which class we are talking about

Naive View of Objects

8

UW CSE401/501m-25sp

• Each object contains

✦ storage for every field (instance variable)

- including all inherited fields (public or private or …)

✦ A pointer to a runtime data structure for the class

- i.e. a method dispatch table (vtable, see next slide)

• An object is a struct (equipped with a pointer to a vtable)

• Crucial! — Fields are allocated regardless of whether
they are shadowed. Superclass methods can still access
those fields!

Representation of Objects

9

UW CSE401/501m-25sp

A Struct + Some Class Data

10

	0	***

	8	field1		____

16	field2		____

24	field3		____

			…

A Struct
	0	***

	8	method1

16	method2

24	method3

			…

Some Class Data

	0	***

	8	field1		____

16	field2		____

24	field3		____

			…

Another Object

UW CSE401/501m-25sp

• One of these per class, not per object

• Often called a virtual table, a.k.a. vtable, (or vtbl or vtab)

✦ The name virtual function table is the term from C++

• There is one pointer in the vtable for each method

✦ points to the beginning of the compiled method code

Method Dispatch Tables

11

	0	***

	8	field1		____

16	field2		____

24	field3		____

			…

object
	0	***

	8	method1

16	method2

24	method3

			…

vtable
Class::method1

assembly

Class::method2

Class::method3

UW CSE401/501m-25sp

• What about if a method is in some super-class of an object?

✦ We need to “redirect” lookups to super-classes

• What does this remind you of?

✦ Symbol tables — can’t we just use symbol tables at runtime?

(conceptually yes, but…)

• Method Dispatch

✦ look in table for object’s class for method

✦ if not found there, look in the parent class table

✦ if not found there, repeat (one class up)

✦ error if we run out of parents

• The above method is really used for dynamic languages! (e.g.
Python, Ruby, SmallTalk, Lua, JavaScript, Self, …)

Method Tables and Inheritance

12

UW CSE401/501m-25sp

Parent Class Pointers

13

	0	***

	8	field1		____

16	field2		____

24	field3		____

			…

Object
	0	***

	8	method1

16	method2

24	method3

			…

vtable

	0	***

	8	method1

16	method2

24	method3

			…

parent vtable

UW CSE401/501m-25sp

• The method table for an extended class has pointers to
all inherited and local methods for that class

• The first part of the method table for the subclass has
pointers for methods in the same order as for the
superclass.

✦ But, pointers refer to the overriding method (if any)

✦ Or, pointers refer to the original method if not overriden

✦ So, dispatch can just be done with an indirect jump,

regardless of the dynamic type of an object. The entry
for method foo() is always at exactly the same offset

- C code equiv: (*(obj->vtbl[offset]))(params)

Better — O(1) Method Dispatch

14

UW CSE401/501m-25sp

class	One	{

		int	foo;

		int	bar;

		void	setFoo()	{

				foo	=	1;

		}

		int	getFoo()	{

				return	foo;

		}

		void	setBar(int	bar)	{

				this.bar	=	bar;

		}

		int	getBar()	{

				return	bar;

		}

}

class	Two	extends	One	{

		int	bar;

		void	setFoo()	{

				foo	=	2;	bar	=	3;

		}

		int	getIt()				{	return	bar;	}

		void	resetIt()	{	super.setBar(42);	}

}

Perverse Example — Revisited

15

public	class	Main	{

		public	static	void	main(String[]	args)	{

				Two	two	=	new	Two();

				One	one	=	two;

				one.setFoo();

				System.out.println(one.getFoo());

				one.setBar(17);

				two.setFoo();

				System.out.println(two.getBar());

				System.out.println(two.getIt());

				two.resetIt();

				System.out.println(two.getBar());

				System.out.println(two.getIt());

		}

}

UW CSE401/501m-25sp

Implementation

16

Regs Stack
%rax
%rbx
%rcx
%rdx
%rsp
%rbp
%rsi
%rdi
%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

one:	____

two:	____

Heap

Objects VTables Code

One::setFoo

One::getBar

One::getFoo

One::setBar

Two::resetIt

Two::setFoo

Two::getIt

Two

	0	(parent)

	8	setFoo

16	getFoo

24	setBar

32	getBar

40	getIt

48	resetIt

One

	0	(parent)

	8	setFoo

16	getFoo

24	setBar

32	getBar

Override

Additional
Inherit

	0	vtbl

	8	foo		____

16	bar		____

24	bar		____

UW CSE401/501m-25sp

• We don’t need a pointer to the parent class vtable to
implement method calls any more, but it is often still
useful and important

✦ e.g. checking casting and instanceof

• Multiple inheritance requires more complicated
mechanisms

✦ This is also true for classes that implement multiple

interfaces.

Method Dispatch Footnotes

17

UW CSE401/501m-25sp

Dynamic Method Dispatch

Object Layout & Field Access
Virtual Tables, Methods, & the Rest

Outline

18

UW CSE401/501m-25sp

• Typically, we allocate fields sequentially

• We need to follow any processor/OS/ABI conventions on
the (address) alignment of structs/objects if present

✦ so, we may need to include padding bytes

• Use the first (quad)-word of the object to hold a pointer to
the method table (vtable)

• All objects are allocated on the heap (in Java)

✦ In C++ objects can also be allocated on the stack or as

globals

Object Layout

19

UW CSE401/501m-25sp

• Example Source Code

int	n	=	obj.fld

• x86-64

movq	offsetobj(%rbp),%rax	# load obj ptr

movq	offsetfld(%rax),%rax	# load fld, using obj ptr

movq	%rax,offsetn(%rbp)		# store n (assignment)

• Same idea for references to this.fld
✦ use the implicit this parameter passed to the method

instead of a local variable to get the object address

Object Field Access

20

UW CSE401/501m-25sp

• In Java or MiniJava, a method can refer to a field “f” of
the object/class as either “f” or “this.f”

✦ Both of these compile to the same code, using an

implicit “this”

✦ How does this work? There is a hidden, implicit “this”

argument to all methods

Local Fields

21

UW CSE401/501m-25sp

What you write

class	One	{

		…

		int	getBar()	{

				return	bar;

		}

		void	setBar(int	bar)	{

				this.bar	=	bar;

		}

}

…

		{

				obj.setBar(42);

				k	=	obj.getBar();

		}

Source-Level View

22

What you really get

…

		int	getBar(One	this)	{

				return	this.bar;

		}

		void	setBar(One	this,

														int	bar)	{

				this.bar	=	bar;

		}

…

{

		setBar(obj,42);

		k	=	getBar(obj);

}

UW CSE401/501m-25sp

• Is “this” the responsibility of the ISA? the ABI? the
Programming Language? the compiler?

✦ Hmmm… if our ABI is language-specific (usually we

assume the C ABI) then the ABI. If (like for real Java)
there is a runtime/JIT compiler, then the compiler
doesn’t need to share…

• For the MiniJava project, we’ll place “this” in %rdi (the
first argument register) for every non-static method call

• (further arguments go in remaining argument registers)

Who Decides “this”?

23

UW CSE401/501m-25sp

Dynamic Method Dispatch

Object Layout & Field Access

Virtual Tables, Methods, & the Rest

Outline

24

UW CSE401/501m-25sp

• Generate these as initialized data in the assembly
language source program (not on heap or stack)

✦ recall — these are essentially global constants

• We need a naming convention that will work for the
assembly language labels assigned to methods/classes

✦ Methods — classname$methodname

✦ VTables — classname$$

• The first entry in the method table points to the
superclass method table. We shouldn’t need to use it in
the project, but allows for dynamic casts, checks, and
can help you with debugging.

MiniJava Method Tables (vtables)

25

UW CSE401/501m-25sp

• Recall

✦ Overloading — two methods with the same name

(maybe in the same class) but with different numbers of
and types of arguments (i.e. different signatures)

✦ Overriding — a method with the same signature in a
sub-class that shadows the super-class method.

• Overloading is more complicated to handle

✦ (conveniently omitted from MiniJava)

• I will generally avoid talking about overloading in this
class for the sake of simplicity

Aside: Overloading vs. Overriding

26

UW CSE401/501m-25sp

class	One	{

		void	setFoo()	{…}

		int	getFoo()	{…}

		void	setBar(int	bar)	{…}

		int	getBar()	{…}

}

class	Two	extends	One	{

		//	override

		void	setFoo()	{…}

		//	additional

		int	getIt()	{…}

		void	resetIt()	{…}

}

Perverse Example — VTables

27

								.data

								#	0	=	no	superclass

One$$:		.quad	0

								.quad	One$setFoo

								.quad	One$getFoo

								.quad	One$setBar

								.quad	One$getBar

								#					superclass

Two$$:		.quad	One$$

								.quad	Two$setFoo

								.quad	One$getFoo

								.quad	One$setBar

								.quad	One$getBar

								.quad	Two$getIt

								.quad	Two$resetIt

UW CSE401/501m-25sp

• The first 4 entries in class	Two’s method table are
pointers to methods in exactly the same order and same
offset as in One’s method table

• Thus, the compiler knows the correct offset for a
particular method pointer regardless of whether or not
that method is overridden, and regardless of the actual
(dynamic) type of the object on which the method is
being invoked.

• This helps enable highly efficient method dispatch

Method Table Layout

28

UW CSE401/501m-25sp

• Steps required

✦ Call the storage manager (e.g. malloc) to get raw bytes

✦ Initialize the bytes to 0 (for Java, not in C++)

✦ Store pointer to the class method table in the first 8

bytes of the object

✦ Call the appropriate constructor function for the class,

passing the new object as the “this” pointer (in %rdi)

- note in MiniJava there are no constructors

✦ The result of new is a pointer to the new object

Object Creation — new

29

UW CSE401/501m-25sp

• Example Source Code

One	one	=	new	One(…);

• x86-64

movq		$nBytesNeeded,%rdi		#	obj size + 8 for vtbl ptr

call		mallocEquiv									#	addr of bytes returned in %rax

<zero out allocated obj, or use calloc>
leaq		One$$(%rip),%rdx				#	get method table address

movq		%rdx,0(%rax)								#	store vtbl ptr at beginning of obj

movq		%rax,%rdi											#	set “this” argument

movq		%rax,offsettmp(%rbp)	#	save “this” for after the call
<load constructor arguments>

call		One$One													#	call constructor (if used)

movq		offsettmp(%rbp),%rax	#	recover ptr to new object

movq		%rax,offsetone(%rbp)	#	store to variable “this”

Object Creation (assembly)

30

UW CSE401/501m-25sp

• On the preceding slide you may find…

leaq		One$$(%rip)

✦ what the heck?

• “I thought you’re not allowed to reference %rip in
assembly code!”

• This particular addressing mode is “PC-relative”
addressing — somewhat obscure, not worth worrying
about the precise meaning.

✦ Important for a feature called 

“position independent code”

✦ It’s ok to just “do it this way” for the project (x86 🤦)

A Very Weird Addressing Mode

31

UW CSE401/501m-25sp

• Why don’t we need a vtable lookup to find the right
constructor to call? 

• At compile time we know the actual class. It must be
exactly the class name following new! So, we can
generate a call instruction to the specific label statically.

✦ (same with any invocation of super.method(…) inside

some piece of code. This particular method dispatch
can be resolved statically)

Constructor — vtable?

32

UW CSE401/501m-25sp

• Parameter passing — just like an ordinary C function,
except we load a “this” pointer into the first argument
%rdi

• We can get a pointer to the object’s method table from
the first 8 bytes of the object

• We then jump indirectly through the method table

Method Calls

33

UW CSE401/501m-25sp

• Example Source Code

obj.method(…);

• x86-64

<load arguments into the registers as usual & needed>

movq		offsetobj(%rbp),%rdi		#	the first arg is obj ptr (“this”)

movq		0(%rdi),%rax									#	load vtbl address into %rax
call		*offsetmethod(%rax)				#	call the function whose addr
																											#	is at the specified vtbl offset

• We can get the same effect as the last line with

				addq		offsetmethod,%rax

				call		*(%rax)

✦ or

				movq		offsetmethod(%rax),%rax

				call		*%rax

Method Call (assembly)

34

UW CSE401/501m-25sp

• We can use the method table for the class as a “runtime
representation” of the class — each class has a unique
vtbl at a unique address

• The test for “o	instance	of	C” is

✦ Is o’s method table pointer &C$$?

✦ Recursively, get pointer to superclass method table

from the method table and check that

✦ Stop when you reach Object (or a null pointer,

depending on Java vs. MiniJava)

• The same idea covers checking whether a downcast is
legal or not

Runtime Type Checking

35

UW CSE401/501m-25sp

• Next Monday, we cover Optimization

• Next Wednesday (and Section) we cover the last bits
needed for the compiler project

• Next Wednesday and Friday, we cover Dataflow program
anlayses

✦ We’ll cover some very basic analyses, but this is a very

deep topic that’s very important for all kinds of tools
that analyze programs (not just compilers)

• Beyond!

✦ SSA (IR), and Backend Compiler Optimizations!

Next Time…

36

