
UW CSE401/501m-25sp

Lecture K:

Code Shape I —
Inside A Function
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

• Midterm Results — Will be out very soon; exam and solution
will be posted online at that time

✦ Score distribution looks ok overall

✦ If you did not do as well as you’d hoped, take the

opportunity to reflect and figure out why. This is only a
fraction of your grade. Remember we’re here to help.

• Parser/AST feedback — if you have questions, feedback or
regrade requests, please email cse401-staff@cs and cc your
partner on all emails. It’s good to fix serious problems before
moving forward.

• Checking is DUE next Tuesday

✦ Make sure to come (w/partner) to sections this Thursday

Administrivia

2

UW CSE401/501m-25sp

• Today — basics of Code Generation / Code Shape

✦ Will focus on Statements and Expressions inside of a

single function/method

• Wednesday & Friday — OOP Concepts & Whole Program

✦ How do we do layout in memory of objects?

✦ How do we compile function calls?

✦ How do we perform dynamic dispatch?

• Next Wed & Next Thu — MiniJava Codegen Details

✦ How do we get our generated code to interact with the

broader host system so that we can actually run it?

Plan for This Week + a bit

3

UW CSE401/501m-25sp

Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline

4

UW CSE401/501m-25sp

Structural Invariants
Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline

5

UW CSE401/501m-25sp

Linear
IR Pass Linear

IR
Linear

IR Pass

Where we are in the Compiler

6

Front-End of the Compiler

Back-End of the Compiler

AST to Linear IR

Types +
Symbol
Tables

CheckerSyntax
TreeParserToken

StreamScanner
Source
Code

(strings)

6

UW CSE401/501m-25sp

• What are the possible options for structuring this pass?

✦ Structural Recursion on the AST — Hard to come up

with something else to do with an AST!

• How should we start thinking about writing a structurally
recursive function?

✦ In Medias Res (trans. “in the middle of events”)

• Which kind of AST Node should we think about first?

✦ a generic Statement or Expression!

• Pay attention to what comes before, during, & after!

From AST to Linear IR

7

UW CSE401/501m-25sp

The Shape of Statements

8

stmt1 assembly

stmt2 assembly

before assembly

stmtn assembly

after assembly

…

{

		stmt1;

		stmt2;

		…

		stmtn;

}

Source Code

StmtList

stmt1 stmt2 stmtn…

AST

UW CSE401/501m-25sp

What must be true before and
after each block of assembly
code corresponding to a
statement?

Every translation of a
statement can assume the
invariant is true before
starting.

In return, each translation has
to guarantee the invariant is
true after finishing.

The Shape of Statements

9

stmt1 assembly

stmt2 assembly

before assembly

stmtn assembly

after assembly

…

Invariants

UW CSE401/501m-25sp

• The stack should be
managed according to the
ABI! (note %rsp,	%rbp)

• All local variables should
be stored on the stack
frame between statements

• No guarantees on the
contents of any other
register

(Some) Invariants We Will Use

10

saved %rbp register

argument 7
…

argument n

(if it exists)
saved return address

16(%rbp)
8(%rbp)

(%rbp)

-8(%rbp)

(%rsp)

locals, temps, 
saved registers, 

etc.

outgoing arguments

previous
frame

current
frame

%rax %rbx %rcx %rdx %rsp %rbp %rsi %rdi

%r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15

Registers

UW CSE401/501m-25sp

The Shape of Expressions

11

e2 assembly

op1 assembly

e1 assembly

e3 assembly

op2 assembly

Source Code

AST op2

e1 e2

e3op1

(e1	op1	e2)	op2	e3

What kind of traversal order is this? Post-Order

UW CSE401/501m-25sp

• The stack should be
managed according to the
ABI! (note %rsp,	%rbp)

• All local variables should
be stored on the stack
frame between statements

• No guarantees on the
contents of any other
register

• Expression Results 
will be held in %rax

(Some) Invariants We Will Use

12

saved %rbp register

argument 7
…

argument n

(if it exists)
saved return address

16(%rbp)
8(%rbp)

(%rbp)

-8(%rbp)

(%rsp)

locals, temps, 
saved registers, 

etc.

outgoing arguments

previous
frame

current
frame

%rax %rbx %rcx %rdx %rsp %rbp %rsi %rdi

%r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15

Registers

UW CSE401/501m-25sp

• consider evaluation of e1 op e2:

✦ Eval e1, then eval e2 (result in %rax), then eval op

✦ Where does the result of e1 go?

• Idea 1: put the result of e1 into %rbx — will this work?

• What if e2 = e3 op2 e4?

✦ Then, we eval e3, eval e4 (into %rax), then eval op2

✦ Where does the result of e3 go?

• A vicious cycle!

First Operand Location?

13

UW CSE401/501m-25sp

• consider evaluation of e1 op e2:

✦ Eval e1, then eval e2 (result in %rax), then eval op

✦ Where does the result of e1 go?

• Observation — the number of temporary LHS operands
required may be arbitrarily large, but we have a limited number
of registers

• Idea 2: put temporary intermediary values (LHS) on the stack.
This has two consequences

✦ Invariant “all other registers don’t matter” maintained

✦ stack frame size is dynamic, not static (hence %rbp)

✦ The cost of going to memory vs. registers

First Operand Location? (2)

14

UW CSE401/501m-25sp

• We’ve talked about statements and expressions in
general, but we haven’t talked about any specific
statements or expressions!

• In reality, it’s often very hard to get the general principle
(i.e. choice of invariant) right on the first guess.

✦ We have to work a bunch of examples, and then realize

“oh no, that won’t work at all”

• At that point you have to go back and change your
invariant. (and then repeat this cycle a few times)

• The big danger — your code uses different invariants in
different cases. Doing this will create complicated bugs.

In Medias Res

15

UW CSE401/501m-25sp

• You don’t have to use these exact invariants

✦ Enjoy your Freedom! 🦅

✦ Or, the nice thing about standards is…

• But! you will probably get in trouble if you don’t think
carefully about what invariants you want to maintain

Are Invariants Necessary?

16

UW CSE401/501m-25sp

Structural Invariants

Expressions & Simple Statements
Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline

17

UW CSE401/501m-25sp

• Source Code

17

• x86-64

movq	$17,%rax

• Alternate form (optimization) when constant is 0

xorq	%rax,%rax

Constants (Expressions)

18

UW CSE401/501m-25sp

• In MiniJava, all variables are either local or instance vars

• Source Code

x

• x86-64 (when variable is method-local)

✦ (stored at an offset in the stack frame, e.g. -16)
movq	-16(%rbp),%rax

• x86-64 (when dealing with an instance variable)

✦ We will cover classes/objects next lecture…

Variables (Expressions)

19

UW CSE401/501m-25sp

• Source Code

var	=	exp;

• x86-64

<eval exp into	%rax>

movq	%rax,-16(%rbp)

• (if var is stored at -16 on the stack; 
otherwise, wherever it is stored)

Assignment Statements

20

UW CSE401/501m-25sp

• Source Code

-exp

• x86-64

<eval exp into	%rax>

negq	%rax

• Optimization
✦ collapse -(-exp) to exp

• (note: unary plus is a no-op)

Unary Minus

21

UW CSE401/501m-25sp

• Source Code

exp1	+	exp2

• x86-64

<eval exp1 into %rax>

<eval exp2 into %rdx>

addq	%rdx,%rax

Binary Plus

22

UW CSE401/501m-25sp

• If exp2 is only a variable or constant, we don’t need to
load it into another register first. Instead, we can do

addq	<exp2>,%rax

• We can change exp1	+	(-exp2) into exp1	-	exp2

• If exp2 is 1, we can replace this with

incq	%rax

✦ Which is better? It depends on the microarchitecture.
(i.e. processor implementation) So, is x86-64 code
portable?

Binary Plus (Optimizations)

23

UW CSE401/501m-25sp

• Same as addition (more or less)

✦ Use subq for subtraction (but be careful of arg. order!)

✦ Use imulq for mutliplication

• Some optimizations

✦ Can replace 2*x with x	<<	1 or x+x

✦ More complicated 10*x = (x	<<	3)	+	(x	<<	1)

- if multiplication is slow enough, maybe a good idea

✦ Could use decq for x-1

✦ Could use leaq	(%rax,%rax,4),%rax to compute 5*x

Binary Sub., Mult.

24

UW CSE401/501m-25sp

• Source Code

exp1	/	exp2

• x86-64

<eval exp1 into %rax>	# recall: exp1 must be in %rax!

<eval exp2 into %rbx>

cqto										# extend %rax into %rdx

idivq	%rbx				# quotient in %rax, remainder in %rdx

• (yup, it’s ugly as we talked about. It’s also slow)

Signed Integer Division

25

UW CSE401/501m-25sp

• Very important in real systems!

✦ Battery life, compute time, real-time applications

(audio, games, video, flight-control)

• Best done systematically

✦ Focus on important parts (e.g. inner-loop)

✦ Based on controlled experiments, not pure theory

• Which is why premature optimization is…

• It can be tempting 😈 to implement lots of 
optimizations in your code gen, but each 
optimization increases complexity. Good 
compiler construction is about fighting complexity!

Optimization is…

26

UW CSE401/501m-25sp

Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting
Statement Control Flow

Arrays

Outline

27

UW CSE401/501m-25sp

• Source Code

if	(cond)	stmt

• x86-64

				<eval cond…>

				jump to skip if cond was false

				<code for stmt>

skip:

• Ok, but how do we compile cond then?

A Preview…

28

UW CSE401/501m-25sp

• How do we generate code for …

x	>	y

• e.g. How do we generate code for if	(x	>	y)	stmt ?

• What if it’s more like (x	>	y)	&&	(y	>	z) ?

• And what about z	=	(x	>	y); ?

• Approach 1: make code generation of Boolean
expressions depend on context

• Approach 2: code generate for Boolean expressions in a
context-independent way (but maybe less optimized)

Boolean Expressions

29

UW CSE401/501m-25sp

• Source Code

exp1	&&	exp2

• x86-64

<eval exp1 into %rax>

<eval exp2 into %rdx>

andq	%rdx,%rax

• What’s wrong here?

• This code will execute exp2 regardless of whether exp1 is
true or false — i.e. there is no short-circuiting!

And — a first attempt

30

UW CSE401/501m-25sp

• Suppose we are computing the expression exp1	&&	exp2
and assigning the result to a variable res.

✦ i.e. res	=	exp1	&&	exp2;

• The above should have the same meaning as

if	(exp1)

				res	=	exp2;

else

				res	=	false;

• Encoding Note: We can choose whatever encoding of
true and false we want, but 1 and 0 are customary.

Short-Circuiting Behavior

31

UW CSE401/501m-25sp

• Source Code

exp1	&&	exp2

• x86-64

				<eval exp1 into %rax>

				cmpq	$0,%rax

				je	skip

				<eval exp2 into %rax>

skip:

And

32

UW CSE401/501m-25sp

• Source Code

exp1	||	exp2

• x86-64

				<eval exp1 into %rax>

				cmpq	$0,%rax

				jne	skip

				<eval exp2 into %rax>

skip:

Or

33

UW CSE401/501m-25sp

• Source Code

!exp

• x86-64

				<eval exp into %rax>

				xorq	$1,%rax

• Why doesn’t this example use notq?

• For what encodings of Booleans does the above work?

Not

34

UW CSE401/501m-25sp

• Source Code

exp1	<	exp2

• x86-64

				<eval exp1 into %rax>

				<eval exp2 into %rbx>

				cmpq	%rbx,%rax

				jnl	gebranch

				movq	$1,%rax

				jmp	done

gebranch:

				movq	$0,%rax

done:

Less Than

35

UW CSE401/501m-25sp

• The examples above are definitely much less efficient
than they have to be.

✦ e.g. true	&&	x	=	x, etc.

• A more efficient approach might fuse the computation of
Booleans into the control flow statements they’re used in

✦ i.e. treat the case of assigning a Boolean to a variable

as the uncommon case, and the case of branching on
a Boolean expression as the common case

✦ Doing this safely requires a different invariant; this is a
nice stretch goal if you’re looking for extra credit

Optimizing Booleans

36

UW CSE401/501m-25sp

• Source Code

exp1	<	exp2

• x86-64

				<eval exp1 into %rax>

				<eval exp2 into %rbx>

				cmpq			%rbx,%rax

				setl			%al						# sets low byte of %rax to 0/1

				movzbq	%al,%rax	# zero-extend to 64 bits

• Note: this uses x86 features we didn’t cover, like %al
(lowest 8-bits of %rax), setcc, which is like jcc but sets
instead of jumping, and movzbq which zero-extends

e.g. Optimizing Less Than

37

UW CSE401/501m-25sp

Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow
Arrays

Outline

38

UW CSE401/501m-25sp

• Source Code

if	(cond)	stmt

• x86-64

				<eval cond into %rax>

				cmpq	$0,%rax	

				je	skip

				<code for stmt>

skip:

• note: (true for all labels) need to make sure labels get
unique names when generating code!

If

39

UW CSE401/501m-25sp

• Source Code

if	(cond)	stmt1	else	stmt2

• x86-64

						<eval cond into %rax>

						cmpq	$0,%rax	

						je	else

						<code for stmt1>

						jmp	done

else:	<code for stmt2>

done:

If-Else

40

UW CSE401/501m-25sp

• Source Code

while	(cond)	stmt

• x86-64

test:	<eval cond into %rax>

						cmpq	$0,%rax	

						je	done

						<code for stmt>

						jmp	test

done:

While

41

UW CSE401/501m-25sp

• Source Code

while	(cond)	stmt

• x86-64

						jmp	test

loop:	<code for stmt>	

test:	<eval cond into %rax>

						cmpq	$0,%rax	

						jne	loop

• Why do this alternative?

• Doing this moves one jump out of the inner loop

✦ usually a win, and about as simple as the first method

Alternate While

42

UW CSE401/501m-25sp

• Source Code

do	stmt	while	(cond)

• x86-64

loop:	<code for stmt>	

test:	<eval cond into %rax>

						cmpq	$0,%rax	

						jne	loop

Do-While

43

UW CSE401/501m-25sp

						<eval cond1 into %rax>

						cmpq	$0,%rax	

						je	else1

						<eval cond2 into %rax>

						cmpq	$0,%rax	

						je	else2

						<code for stmt1>

						jmp	done2

else2:	<code for stmt2>

done2:

						jmp	done1

else1:	<code for stmt3>

done1:

Jumping All Around

44

if	(cond1)	{

		if(cond2)

				stmt1

		else

				stmt2

}	else

		stmt3

We might turn this
into assembly code
with the following
“shape” …

UW CSE401/501m-25sp

• Naive code generation can produce jumps to jumps when
we nest control flow structures

• Optimization — if a jump has as its target an
unconditional jump, change the target of the first jump to
the target of the second jump

✦ repeat until we reach fixed-point

✦ This can be fixed up at different points (e.g. via CFG)

Jump Chaining

45

UW CSE401/501m-25sp

• Source Code

switch(exp)	{

		case	0:	stmt0;

		case	1:	stmt1;

		case	2:	stmt2;

}

• (break is an unconditional jump to the end of the switch)

• compilation strategy 1 — reduce to a set of nested if-else
statements; however, this may require O(n) comparisons

• compilation strategy 2 — compile to a “jump table”

Switch

46

UW CSE401/501m-25sp

• Source Code

switch(exp)	{

		case	0:	stmt0;

		case	1:	stmt1;

		case	2:	stmt2;

}

Switch (Jump Table)

47

• x86-64
		<put exp in %rax>

		#	if %rax not between 0 and 2,

		#	then jmp to the default label

		movq			swtable(,%rax,8),%rax

		jmp				*%rax

				.data

swtable:

				.quad	L0

				.quad	L1

				.quad	L2

				.text

L0:	<stmt0>

L1:	<stmt1>

L2:	<stmt2>

UW CSE401/501m-25sp

Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline

48

UW CSE401/501m-25sp

• In Java, arrays are

✦ 0-origin — i.e. an array with n elements indexes them

as a[0] through a[n-1] (a[n] is out of bounds)

✦ 1-dimension (Java) — to get more than one dimension,

we use nested arrays (i.e. a[i][j], not a[i,j])

• Regardless of what kind of arrays, the key step is to do
an indexing calculation to guide the load/store

Arrays

49

UW CSE401/501m-25sp

• Source Code

exp1[exp2]

• x86-64

<eval exp1 into %rax>

<eval exp2 into %rdx>

if load, then

movq	(%rax,%rdx,8),…			#	64-bit	array	elem.

if store, then
movq	…,(%rax,%rdx,8)

Arrays (0-based, 1-dimension)

50

imulq	$8,%rdx

		#	(or use left shift)
addq	%rdx,%rax

movq	(%rax),…

Alternatively…

UW CSE401/501m-25sp

• If we have an array type, we can have Array(Array(T))

• What are the downsides?

✦ No way to guarantee that the arrays are rectangular —

we could have ragged arrays

✦ Extra memory lookup / indirection cost

• So, it makes sense to have “native” multi-dimensional
arrays

Arrays of Arrays

51

UW CSE401/501m-25sp

• If the language has 2-dimensional arrays, then

✦ Are they row-major or column-major? 

 
 
 
 
 

• What is the formula for 2d array indexing?

2-dimensional Arrays

52

Row Major Column Major

A[i,j]

A is NxM

Row Major

&A	+	8*(M*i	+	j)

Column Major

&A	+	8*(i	+	N*j)

UW CSE401/501m-25sp

• Mighty Tempting!

✦ “Oh, who will notice if I cut 

 a little corner here or there?”

• Once you start violating your invariants, you open the
door to all kinds of fiendish 😈 bugs.

• You can pick whatever invariants you want, but you have
to keep your promise to yourself!

✦ If it’s an invariant, you can assume it

✦ But if it’s in an invariant, then you’re 

responsible for guaranteeing it too!

Optimization is…

53

UW CSE401/501m-25sp

• Code Generation for Objects (Wed/Fri)

✦ How to represent objects

✦ How to represent method calls

✦ Inheritance and overriding

• Optimization (next Mon)

• Practical Details for Project (next week; Wed/Thu)

Next Time…

54

