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Lecture K: 

Code Shape I — 
Inside A Function
CSE401/501m:


Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1



UW CSE401/501m-25sp

• Midterm Results — Will be out very soon; exam and solution 
will be posted online at that time

✦ Score distribution looks ok overall

✦ If you did not do as well as you’d hoped, take the 

opportunity to reflect and figure out why.  This is only a 
fraction of your grade.  Remember we’re here to help.


• Parser/AST feedback — if you have questions, feedback or 
regrade requests, please email cse401-staff@cs and cc your 
partner on all emails.  It’s good to fix serious problems before 
moving forward.


• Checking is DUE next Tuesday

✦ Make sure to come (w/partner) to sections this Thursday

Administrivia
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• Today — basics of Code Generation / Code Shape

✦ Will focus on Statements and Expressions inside of a 

single function/method


• Wednesday & Friday — OOP Concepts & Whole Program

✦ How do we do layout in memory of objects?

✦ How do we compile function calls?

✦ How do we perform dynamic dispatch?


• Next Wed & Next Thu — MiniJava Codegen Details

✦ How do we get our generated code to interact with the 

broader host system so that we can actually run it?

Plan for This Week + a bit
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Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline

4



UW CSE401/501m-25sp

Structural Invariants 
Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline
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Linear 
IR Pass Linear 

IR
Linear 

IR Pass

Where we are in the Compiler
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Front-End of the Compiler

Back-End of the Compiler

AST to Linear IR

Types + 
Symbol 
Tables

CheckerSyntax 
TreeParserToken 

StreamScanner
Source 
Code 

(strings)
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• What are the possible options for structuring this pass?

✦ Structural Recursion on the AST — Hard to come up 

with something else to do with an AST!


• How should we start thinking about writing a structurally 
recursive function?

✦ In Medias Res (trans. “in the middle of events”)


• Which kind of AST Node should we think about first?

✦ a generic Statement or Expression!


• Pay attention to what comes before, during, & after!

From AST to Linear IR
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The Shape of Statements
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stmt1 assembly

stmt2 assembly

before assembly

stmtn assembly

after assembly

…

{

		stmt1;

		stmt2;

		…

		stmtn;

}

Source Code

StmtList

stmt1 stmt2 stmtn…

AST
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What must be true before and 
after each block of assembly 
code corresponding to a 
statement?

Every translation of a 
statement can assume the 
invariant is true before 
starting.

In return, each translation has 
to guarantee the invariant is 
true after finishing.

The Shape of Statements
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stmt1 assembly

stmt2 assembly

before assembly

stmtn assembly

after assembly

…

Invariants
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• The stack should be 
managed according to the 
ABI! (note %rsp,	%rbp)


• All local variables should 
be stored on the stack 
frame between statements


• No guarantees on the 
contents of any other 
register

(Some) Invariants We Will Use
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saved %rbp register

argument 7
…

argument n

(if it exists)
saved return address

16(%rbp)
8(%rbp)

(%rbp)

-8(%rbp)

(%rsp)

locals, temps, 
saved registers, 

etc.

outgoing arguments

previous 
frame

current 
frame

%rax %rbx %rcx %rdx %rsp %rbp %rsi %rdi

%r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15

Registers
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The Shape of Expressions
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e2 assembly

op1 assembly

e1 assembly

e3 assembly

op2 assembly

Source Code

AST op2

e1 e2

e3op1

(e1	op1	e2)	op2	e3

What kind of traversal order is this? Post-Order
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• The stack should be 
managed according to the 
ABI! (note %rsp,	%rbp)


• All local variables should 
be stored on the stack 
frame between statements


• No guarantees on the 
contents of any other 
register


• Expression Results 
will be held in %rax

(Some) Invariants We Will Use
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saved %rbp register

argument 7
…

argument n

(if it exists)
saved return address

16(%rbp)
8(%rbp)

(%rbp)

-8(%rbp)

(%rsp)

locals, temps, 
saved registers, 

etc.

outgoing arguments

previous 
frame

current 
frame

%rax %rbx %rcx %rdx %rsp %rbp %rsi %rdi

%r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15

Registers
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• consider evaluation of  e1 op e2:

✦ Eval e1, then eval e2 (result in %rax), then eval op

✦ Where does the result of e1 go?


• Idea 1: put the result of e1 into %rbx — will this work?


• What if e2 = e3 op2 e4? 

✦ Then, we eval e3, eval e4 (into %rax), then eval op2

✦ Where does the result of e3 go?


• A vicious cycle!

First Operand Location?
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• consider evaluation of  e1 op e2:

✦ Eval e1, then eval e2 (result in %rax), then eval op

✦ Where does the result of e1 go?


• Observation — the number of temporary LHS operands 
required may be arbitrarily large, but we have a limited number 
of registers


• Idea 2: put temporary intermediary values (LHS) on the stack.  
This has two consequences

✦ Invariant “all other registers don’t matter” maintained

✦ stack frame size is dynamic, not static (hence %rbp)

✦ The cost of going to memory vs. registers

First Operand Location? (2)
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• We’ve talked about statements and expressions in 
general, but we haven’t talked about any specific 
statements or expressions!


• In reality, it’s often very hard to get the general principle 
(i.e. choice of invariant) right on the first guess.

✦ We have to work a bunch of examples, and then realize 

“oh no, that won’t work at all”


• At that point you have to go back and change your 
invariant.  (and then repeat this cycle a few times)


• The big danger — your code uses different invariants in 
different cases.  Doing this will create complicated bugs.

In Medias Res
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• You don’t have to use these exact invariants

✦ Enjoy your Freedom! 🦅

✦ Or, the nice thing about standards is…


• But! you will probably get in trouble if you don’t think 
carefully about what invariants you want to maintain

Are Invariants Necessary?
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Structural Invariants

Expressions & Simple Statements 
Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline
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• Source Code

17


• x86-64

movq	$17,%rax


• Alternate form (optimization) when constant is 0

xorq	%rax,%rax

Constants (Expressions)

18
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• In MiniJava, all variables are either local or instance vars


• Source Code

x


• x86-64 (when variable is method-local)

✦ (stored at an offset in the stack frame, e.g. -16) 
movq	-16(%rbp),%rax


• x86-64 (when dealing with an instance variable)

✦ We will cover classes/objects next lecture…

Variables (Expressions)
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• Source Code

var	=	exp;


• x86-64

<eval exp into	%rax>

movq	%rax,-16(%rbp)


• (if var is stored at -16 on the stack; 
otherwise, wherever it is stored)

Assignment Statements
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• Source Code

-exp


• x86-64

<eval exp into	%rax>

negq	%rax


• Optimization 
✦ collapse -(-exp) to exp


• (note: unary plus is a no-op)

Unary Minus
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• Source Code

exp1	+	exp2


• x86-64

<eval exp1 into %rax>


<eval exp2 into %rdx>

addq	%rdx,%rax

Binary Plus
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• If exp2 is only a variable or constant, we don’t need to 
load it into another register first.  Instead, we can do

addq	<exp2>,%rax


• We can change exp1	+	(-exp2) into exp1	-	exp2


• If exp2 is 1, we can replace this with

incq	%rax


✦ Which is better?  It depends on the microarchitecture. 
(i.e. processor implementation)  So, is x86-64 code 
portable?

Binary Plus (Optimizations)
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• Same as addition (more or less)

✦ Use subq for subtraction (but be careful of arg. order!)

✦ Use imulq for mutliplication


• Some optimizations

✦ Can replace 2*x with x	<<	1 or x+x

✦ More complicated 10*x = (x	<<	3)	+	(x	<<	1)


- if multiplication is slow enough, maybe a good idea

✦ Could use decq for x-1

✦ Could use leaq	(%rax,%rax,4),%rax to compute 5*x

Binary Sub., Mult.
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• Source Code

exp1	/	exp2


• x86-64

<eval exp1 into %rax>	# recall: exp1 must be in %rax!


<eval exp2 into %rbx>


cqto										# extend %rax into %rdx


idivq	%rbx				# quotient in %rax, remainder in %rdx


• (yup, it’s ugly as we talked about.  It’s also slow)

Signed Integer Division
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• Very important in real systems!

✦ Battery life, compute time, real-time applications 

(audio, games, video, flight-control)


• Best done systematically

✦ Focus on important parts (e.g. inner-loop)

✦ Based on controlled experiments, not pure theory


• Which is why premature optimization is…


• It can be tempting 😈 to implement lots of 
optimizations in your code gen, but each 
optimization increases complexity.  Good 
compiler construction is about fighting complexity!

Optimization is…
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Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting 
Statement Control Flow

Arrays

Outline
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• Source Code

if	(cond)	stmt


• x86-64

				<eval cond…>


				jump to skip if cond was false


				<code for stmt>

skip:


• Ok, but how do we compile cond then?

A Preview…
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• How do we generate code for …

x	>	y


• e.g. How do we generate code for  if	(x	>	y)	stmt  ?


• What if it’s more like (x	>	y)	&&	(y	>	z) ?


• And what about  z	=	(x	>	y);  ?


• Approach 1: make code generation of Boolean 
expressions depend on context


• Approach 2: code generate for Boolean expressions in a 
context-independent way (but maybe less optimized)

Boolean Expressions
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• Source Code

exp1	&&	exp2


• x86-64

<eval exp1 into %rax>


<eval exp2 into %rdx>

andq	%rdx,%rax


• What’s wrong here?


• This code will execute exp2 regardless of whether exp1 is 
true or false — i.e. there is no short-circuiting!

And — a first attempt

30
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• Suppose we are computing the expression exp1	&&	exp2 
and assigning the result to a variable res.

✦ i.e.   res	=	exp1	&&	exp2;


• The above should have the same meaning as

if	(exp1)

				res	=	exp2;

else

				res	=	false;


• Encoding Note:  We can choose whatever encoding of 
true and false we want, but 1 and 0 are customary.

Short-Circuiting Behavior
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• Source Code

exp1	&&	exp2


• x86-64

				<eval exp1 into %rax>

				cmpq	$0,%rax

				je	skip

				<eval exp2 into %rax>

skip:

And
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• Source Code

exp1	||	exp2


• x86-64

				<eval exp1 into %rax>

				cmpq	$0,%rax

				jne	skip

				<eval exp2 into %rax>

skip:

Or
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• Source Code

!exp


• x86-64

				<eval exp into %rax>

				xorq	$1,%rax


• Why doesn’t this example use notq?


• For what encodings of Booleans does the above work?

Not

34
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• Source Code

exp1	<	exp2


• x86-64

				<eval exp1 into %rax>

				<eval exp2 into %rbx>

				cmpq	%rbx,%rax

				jnl	gebranch

				movq	$1,%rax

				jmp	done

gebranch:

				movq	$0,%rax

done:

Less Than
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• The examples above are definitely much less efficient 
than they have to be.

✦ e.g. true	&&	x	=	x, etc.


• A more efficient approach might fuse the computation of 
Booleans into the control flow statements they’re used in

✦ i.e. treat the case of assigning a Boolean to a variable 

as the uncommon case, and the case of branching on 
a Boolean expression as the common case


✦ Doing this safely requires a different invariant; this is a 
nice stretch goal if you’re looking for extra credit

Optimizing Booleans
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• Source Code

exp1	<	exp2


• x86-64

				<eval exp1 into %rax>

				<eval exp2 into %rbx>

				cmpq			%rbx,%rax

				setl			%al						# sets low byte of %rax to 0/1

				movzbq	%al,%rax	# zero-extend to 64 bits


• Note: this uses x86 features we didn’t cover, like %al 
(lowest 8-bits of %rax), setcc, which is like jcc but sets 
instead of jumping, and movzbq which zero-extends

e.g. Optimizing Less Than
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Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow 
Arrays

Outline
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• Source Code

if	(cond)	stmt


• x86-64

				<eval cond into %rax>

				cmpq	$0,%rax	

				je	skip

				<code for stmt>

skip:


• note: (true for all labels) need to make sure labels get 
unique names when generating code!

If
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• Source Code

if	(cond)	stmt1	else	stmt2


• x86-64

						<eval cond into %rax>

						cmpq	$0,%rax	

						je	else

						<code for stmt1>

						jmp	done

else:	<code for stmt2>

done:

If-Else
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• Source Code

while	(cond)	stmt


• x86-64

test:	<eval cond into %rax>

						cmpq	$0,%rax	

						je	done

						<code for stmt>

						jmp	test

done:

While
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• Source Code

while	(cond)	stmt


• x86-64

						jmp	test

loop:	<code for stmt>	

test:	<eval cond into %rax>

						cmpq	$0,%rax	

						jne	loop


• Why do this alternative?


• Doing this moves one jump out of the inner loop

✦ usually a win, and about as simple as the first method

Alternate While
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• Source Code

do	stmt	while	(cond)


• x86-64

loop:	<code for stmt>	

test:	<eval cond into %rax>

						cmpq	$0,%rax	

						jne	loop

Do-While
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						<eval cond1 into %rax>

						cmpq	$0,%rax	

						je	else1

						<eval cond2 into %rax>

						cmpq	$0,%rax	

						je	else2

						<code for stmt1>

						jmp	done2

else2:	<code for stmt2>

done2:

						jmp	done1

else1:	<code for stmt3>

done1:

Jumping All Around

44

if	(cond1)	{

		if(cond2)

				stmt1

		else

				stmt2

}	else

		stmt3

We might turn this 
into assembly code 
with the following 
“shape” …
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• Naive code generation can produce jumps to jumps when 
we nest control flow structures


• Optimization — if a jump has as its target an 
unconditional jump, change the target of the first jump to 
the target of the second jump

✦ repeat until we reach fixed-point

✦ This can be fixed up at different points (e.g. via CFG)

Jump Chaining
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• Source Code

switch(exp)	{

		case	0:	stmt0;

		case	1:	stmt1;

		case	2:	stmt2;

}


• (break is an unconditional jump to the end of the switch) 

• compilation strategy 1 — reduce to a set of nested if-else 
statements; however, this may require O(n) comparisons


• compilation strategy 2 — compile to a “jump table”

Switch
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• Source Code

switch(exp)	{

		case	0:	stmt0;

		case	1:	stmt1;

		case	2:	stmt2;

}

Switch (Jump Table)

47

• x86-64
		<put exp in %rax>

		#	if %rax not between 0 and 2,

		#	then jmp to the default label

		movq			swtable(,%rax,8),%rax

		jmp				*%rax

				.data

swtable:

				.quad	L0

				.quad	L1

				.quad	L2

				.text

L0:	<stmt0>

L1:	<stmt1>

L2:	<stmt2>
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Structural Invariants

Expressions & Simple Statements

Booleans and Short-Circuiting

Statement Control Flow

Arrays

Outline
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• In Java, arrays are

✦ 0-origin — i.e. an array with n elements indexes them 

as a[0] through a[n-1]  (a[n] is out of bounds)

✦ 1-dimension (Java) — to get more than one dimension, 

we use nested arrays (i.e. a[i][j], not a[i,j])


• Regardless of what kind of arrays, the key step is to do 
an indexing calculation to guide the load/store

Arrays
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• Source Code

exp1[exp2]


• x86-64

<eval exp1 into %rax>

<eval exp2 into %rdx>


# if load, then

movq	(%rax,%rdx,8),…			#	64-bit	array	elem.


# if store, then 
movq	…,(%rax,%rdx,8)

Arrays (0-based, 1-dimension)

50

imulq	$8,%rdx

		#	(or use left shift) 
addq	%rdx,%rax

movq	(%rax),…

Alternatively…
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• If we have an array type, we can have Array( Array( T ) )


• What are the downsides?

✦ No way to guarantee that the arrays are rectangular — 

we could have ragged arrays

✦ Extra memory lookup / indirection cost


• So, it makes sense to have “native” multi-dimensional 
arrays

Arrays of Arrays
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• If the language has 2-dimensional arrays, then

✦ Are they row-major or column-major? 

 
 
 
 
 

• What is the formula for 2d array indexing?

2-dimensional Arrays

52

Row Major Column Major

A[i,j]

A is NxM

Row Major

&A	+	8*(M*i	+	j)

Column Major

&A	+	8*(i	+	N*j)
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• Mighty Tempting!

✦ “Oh, who will notice if I cut 

  a little corner here or there?”


• Once you start violating your invariants, you open the 
door to all kinds of fiendish 😈 bugs.


• You can pick whatever invariants you want, but you have 
to keep your promise to yourself!

✦ If it’s an invariant, you can assume it

✦ But if it’s in an invariant, then you’re 

responsible for guaranteeing it too!

Optimization is…
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• Code Generation for Objects (Wed/Fri)

✦ How to represent objects

✦ How to represent method calls

✦ Inheritance and overriding


• Optimization (next Mon)


• Practical Details for Project (next week; Wed/Thu)

Next Time…
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