Lecture K:

Code Shape | —
Inside A Function

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

Administrivia

 Midterm Results — Will be out very soon; exam and solution
will be posted online at that time

+ Score distribution looks ok overall

+ If you did not do as well as you’d hoped, take the
opportunity to reflect and figure out why. This is only a
fraction of your grade. Remember we’re here to help.

 Parser/AST feedback — if you have questions, feedback or
regrade requests, please email cse401-staff@cs and cc your
partner on all emails. It's good to fix serious problems before

moving forward.
e Checking is DUE next Tuesday
+ Make sure to come (w/partner) to sections this Thursday

2

UW CSE401/501m-25sp

Plan for This Week + a bit

» Today — basics of Code Generation / Code Shape

+ Will focus on Statements and Expressions inside of a

single function/method

 Wednesday & Friday — OOP Concepts & Whole Program

‘

*

‘

ow do we do layout in memory of objects?
ow do we compile function calls?

ow do we perform dynamic dispatch?

e Next Wed & Next Thu — Minidava Codegen Details

+ How do we get our generated code to interact with the

broader host system so that we can actually run it?

3

Outline

Structural Invariants

Expressions & Simple Statements
Booleans and Short-Circuiting
Statement Control Flow

Arrays

Outline

Structural Invariants

UW CSE401/501m-25sp

Where we are in the Compiller
rSource Types]

Code |Scanner Token Parser Syntax Checker >Symbol
. Stream Tree
@trlngs) Tables
Front-End of the Compiler
\3
’co\l\“ea(
pSt
Back-End of the Compiler
Linear Pass Linear Pass Linear
IR IR IR

6

UW CSE401/501m-25sp

From AST to Linear IR

 \What are the possible options for structuring this pass?

+ Structural Recursion on the AST — Hard to come up
with something else to do with an AST!

* How should we start thinking about writing a structurally
recursive function?

+ In Medias Res (trans. “in the middle of events”)
 Which kind of AST Node should we think about first?
+ a generic Statement or Expression!

* Pay attention to what comes before, during, & after!

UW CSE401/501m-25sp

The Shape of Statements

Source Code

{

stmti;
stmt;;

stmtn;
}

AST (Stth/st]

(st (st \m

~

before assembly

stmt; assembly

stmt, assembly

stmt, assembly

after assembly

UW CSE401/501m-25sp

The Shape of Statements

Invariants

What must be true before and before assembly

after each block of assembly » .

code corresponding to a stmt; assembly

statement? 0
, stmt, assembl

Every translation of a L i 4)

statement can assume the
invariant is true before

starting. stmt, assembly
In return, each translation has - g
to guarantee the invariant is after assembly

true after finishing.

UW CSE401/501m-25sp

(Some) Invariants We Will Use

previous
The stack should be argument n frame
managed %CCOFdITg to the 16(%rbp) argument 7 (if it exists)
ABI! (nOte /ol“SP, /Or'bp) 8(%rbp)| saved return address
. (%rbp)| saved %rbp register
All local variables should ;5.
be stored on the stack /Ocaési temfs, current
saveda reqisters,
frame between statements etf frame
* No guarantees on the |
contents of any other (arspy| OU190INg arguments
register
Registers
%rax | xrbx | %rcx | %rdx | %rsp | %rbp | %rsi | %rdi
%r8 | %r9 | %rl1e | %rll | %rl12 | %rl13 | %rld | %ri1s

10

UW CSE401/501m-25sp

The Shape of Expressions

Source Code (A
e; assembly
(e1 op1 e2) opz2 €3 - /
()
e, assembly
. J
€)
op: assembly
. J
(D
e3 assembly
J
(~ A
op> assembly
J

What kind of traversal order is this? Post-Order

11

UW CSE401/501m-25sp

(Some) Invariants We Will Use

The stack should be
managed according to the

argument n previous
frame
argument 7 (if it exists)

saved return address

saved %rbp register

locals, temps,

saved registers,
etc.

outgoing arguments

current
frame

16(%rbp)
ABI! (note %rsp, %rbp) 8 (%rbp)
(%rbp)
All local variables should ;5.
be stored on the stack
frame between statements
* No guarantees on the
contents of any other (%rsp)
register
* Expression Results Registers

will be held in %rax

%hrax

%rbx

hrcx

%rdx

%rsp

%rbp

%rsi

%rdi

%r8

%r9

%rlo

%rll

%rl2

%rl3

%»rld

%r15

12

UW CSE401/501m-25sp

First Operand Location?

e consider evaluation of e7 op ez:

+ Eval e7, then eval ez (result in %rax), then eval op

+ Where does the result of e7 go?

e |dea 1: put the result of e7 into %rbx — will this work?
e What if e2 = ez 0p2 e4?
+ Then, we eval e3, eval e4 (into %rax), then eval op>

+ Where does the result of ez go?

* A vicious cycle!

13

UW CSE401/501m-25sp

First Operand Location? (2)

e consider evaluation of e op ez:

+ Eval e1, then eval ez (result in %rax), then eval op

+ Where does the result of e7 go?

 Observation — the number of temporary LHS operands
required may be arbitrarily large, but we have a limited number
of registers

e |dea 2: put temporary intermediary values (LHS) on the stack.
This has two conseqguences

+ Invariant “all other registers don’t matter” maintained

+ stack frame size is dynamic, not static (hence %rbp)

+ The cost of going to memory vs. registers

14

UW CSE401/501m-25sp

In Medias Res

* We’ve talked about statements and expressions in
general, but we haven’t talked about any specific
statements or expressions!

* Inreality, it’s often very hard to get the general principle
(i.e. choice of invariant) right on the first guess.

+ We have to work a bunch of examples, and then realize
“oh no, that won’t work at all”

e At that point you have to go back and change your
invariant. (and then repeat this cycle a few times)

* The big danger — your code uses different invariants in
different cases. Doing this will create complicated bugs.

15

UW CSE401/501m-25sp

Are Invariants Necessary?

e You don’t have to use these exact invariants
+ Enjoy your Freedom! ¢

+ Or, the nice thing about standards is...

e But! you will probably get in trouble if you don’t think
carefully about what invariants you want to maintain

16

Outline

Expressions & Simple Statements

17

UW CSE401/501m-25sp

Constants (Expressions)

e Source Code
17

* x86-64
movq $17,%rax

e Alternate form (optimization) when constant is O
xorq »rax,srax

18

UW CSE401/501m-25sp

Variables (Expressions)

 |n Minidava, all variables are either local or instance vars

e Source Code
X

 x86-64 (when variable is method-local)

+ (stored at an offset in the stack frame, e.g. -16)
movq -16(%rbp),%rax

e x86-64 (when dealing with an instance variable)

+ We will cover classes/objects next lecture...

19

UW CSE401/501m-25sp

Assignment Statements

e Source Code
var = exp;

* x86-64
<eval exp into Zrax>
movq %rax,-16(%rbp)

e (if varis stored at -16 on the stack;
otherwise, wherever it is stored)

20

UW CSE401/501m-25sp

Unary Minus

e Source Code
-exp
* xX86-64
<eval exp into Zrax>

negq x%rax

e Optimization
+ collapse - (-exp) to exp

* (note: unary plus is a no-op)

21

UW CSE401/501m-25sp

Binary Plus

e Source Code
exp: + exp:

e X86-64

<eval exp1 into Zrax>

<eval expz into Zrdx>

addqg %rdx,%rax

22

UW CSE401/501m-25sp

Binary Plus (Optimizations)

e |f exp,is only a variable or constant, we don’t need to
load it into another register first. Instead, we can do

addg <expz>,%rax
e We can change exp: + (-expy) into exp: - exp:

e |f exp2is 1, we can replace this with

incq %rax

+ Which is better? It depends on the microarchitecture.
(i.e. processor implementation) So, is x86-64 code
portable?

23

UW CSE401/501m-25sp

Binary Sub., Mult.

e Same as addition (more or less)

+ Use subq for subtraction (but be careful of arg. order!)
+ Use imulgqg for mutliplication

e Some optimizations

+ Can replace 2*x with x << 1 or x+x
+ More complicated 10*x = (x << 3) + (x << 1)

- If multiplication is slow enough, maybe a good idea

+ Could use decq for x-1

+ Could use leaq (%rax,%rax,4),%rax to compute 5*x

24

UW CSE401/501m-25sp

Signed Integer Division

e Source Code

exp: / exp:
* X86-64
<eval exp1 into Zrax> # recall: exp: must be in %rax!

<eval expz into %Zrbx>

cqto # extend %rax into %rdx
idivqg %rbx # quotient in Zrax, remainder in Zrdx

* (yup, it’s ugly as we talked about. It’s also slow)

25

UW CSE401/501m-25sp

Optimization is...

* \ery important in real systems!

+ Battery life, compute time, real-time applications
(audio, games, video, flight-control)

e Best done systematically
+ Focus on important parts (e.g. inner-loop)
+ Based on controlled experiments, not pure theory
* Which is why premature optimization is...

e It can be tempting © to implement lots of
optimizations in your code gen, but each
optimization increases complexity. Good
compiler construction is about fighting complexity!

20

Outline

Booleans and Short-Circuiting

27

UW CSE401/501m-25sp

A Preview...

e Source Code
if (cond) stmt

* X86-64
<eval cond...>
jump to skip if cond was false
<code for stmt>
skip:

e Ok, but how do we compile cond then?

28

UW CSE401/501m-25sp

Boolean Expressions

How do we generate code for ...
X >y

e.g. How do we generate code for if (x > y) stmt ?
What if it’'s more like (x > y) & (y > z) ?
And what about z = (x > y); ?

Approach 1: make code generation of Boolean
expressions depend on context

Approach 2: code generate for Boolean expressions in a
context-independent way (but maybe less optimized)

29

UW CSE401/501m-25sp

And — a first attempt

e Source Code
exp: && exp;

e X86-64

<eval exp1 into Zrax>

<eval expz into Zrdx>

andqg %rdx,srax

 What’s wrong here?

e This code will execute exp, regardless of whether exp; is
true or false — i.e. there is no short-circuiting!

30

UW CSE401/501m-25sp

Short-Circuiting Behavior

e Suppose we are computing the expression exp: && exp,
and assigning the result to a variable res.

+ I.e. res = exp: && expy;

* The above should have the same meaning as
if (expl)
res = expz;
else
res = false;

* Encoding Note: We can choose whatever encoding of
true and false we want, but 1 and 0 are customary.

31

UW CSE401/501m-25sp

And

e Source Code
exp: && exp;

e X86-64

<eval exp1 into Zrax>

cmpg $0,%rax

je skip

<eval expz into Zrax>
skip:

32

Or

e Source Code

exp: || exp:
* X86-64

<eval exp1 into Zrax>

cmpg $0,%rax

jne skip

<eval expz into Zrax>
skip:

33

UW CSE401/501m-25sp

UW CSE401/501m-25sp

Not

e Source Code
lexp

e X86-64

<eval exp into Zrax>
xorq $1,%rax

e \WWhy doesn’t this example use notqg?

* For what encodings of Booleans does the above work?

34

UW CSE401/501m-25sp

Less Than

e Source Code
exp:1 < exp:

* x86-64

<eval exp1 into %rax>

<eval expz into %rbx>

cmpq %rbx,%rax

jnl gebranch

movq $1,%rax

jmp done
gebranch:

movqg $0,%rax
done:

35

UW CSE401/501m-25sp

Optimizing Booleans

* The examples above are definitely much less efficient
than they have to be.

+ e.g. true && x = X, etc.

* A more efficient approach might fuse the computation of
Booleans into the control flow statements they’re used Iin

+ I.e. treat the case of assighing a Boolean to a variable
as the uncommon case, and the case of branching on
a Boolean expression as the common case

+ Doing this safely requires a different invariant; this is a
nice stretch goal if you’re looking for extra credit

36

UW CSE401/501m-25sp

e.g. Optimizing Less Than

e Source Code
expr < exp:

e x86-64

<eval exp into Zrax>

<eval expz into %Zrbx>
cmpqg %rbx,%srax

setl %al # sets low byte of %rax to 0/1
movzbq %al,%rax # zero-extend to 64 bits

e Note: this uses x86 features we didn’t cover, like %al
(lowest 8-bits of %rax), setc, which is like j.c but sets
instead of jumping, and movzbqg which zero-extends

37

Outline

Statement Control Flow

38

UW CSE401/501m-25sp

It

e Source Code
if (cond) stmt

e X86-64

<eval cond into %rax>

cmpg $0,%rax

je skip

<code for stmt>
skip:

e note: (true for all labels) need to make sure labels get
unique names when generating code!

39

UW CSE401/501m-25sp

If-Else

e Source Code
if (cond) stmt; else stmt;

e X86-64

<eval cond into Zrax>
cmpg $0,%rax
je else
<code for stmti>
jmp done
else: <code for stmt,>
done:

40

While

e Source Code
while (cond) stmt

e X86-64

test: <eval cond into %rax>
cmpg $0,%rax
je done
<code for stmt>
jmp test

done:

41

UW CSE401/501m-25sp

UW CSE401/501m-25sp

Alternate While

e Source Code
while (cond) stmt

* x86-64
jmp test
loop: <code for stmt>

test: <eval cond into %rax>
cmpg $0,%rax
jne loop

 Why do this alternative?
* Doing this moves one jump out of the inner loop

+ usually a win, and about as simple as the first method

42

UW CSE401/501m-25sp

Do-While

e Source Code
do stmt while (cond)

* x86-64
loop: <code for stmt>

test: <eval cond into Zrax>
cmpg $0,%rax
jne loop

43

UW CSE401/501m-25sp

Jumping All Around

if (cond:) {
if(cond,)
stmt;
else
stmt,
} else
STmts

We might turn this
iInto assembly code
with the following
“shape” ...

—

(:;:;lseZ:
done?2:

—

(:;:élselz
donel:

44

<eval cond; into %rax>
cmpq $0,%rax
je elsel

<eval cond; into Zrax>
cmpg $0,%rax
je else2

ccode for stmti>
jmp done2

ccode for stmt,>

jmp donel
ccode for stmts>

Jump Chaining

* Naive code generation can produce jJumps to jumps when
we nest control flow structures

 Optimization — if a jump has as its target an
unconditional jJump, change the target of the first jump to

the target of the second jump
+ repeat until we reach fixed-point
+ This can be fixed up at different points (e.g. via CFG)

45

UW CSE401/501m-25sp

Switch

e Source Code

switch(exp) {
case 0O: stmtg;
case 1: stmts;
case 2: stmt,;

}

e (break is an unconditional jump to the end of the switch)

e compilation strategy 1 — reduce to a set of nested if-else
statements; however, this may require O(n) comparisons

e compilation strategy 2 — compile to a “jump table”

46

UW CSE401/501m-25sp

Switch (Jump Table)

e Source Code e xX86-64

switch(exp) { <put exp in %rax>
case 0: stmto; # if %rax not between 0 and 2,

€a>€ 1: Stmtlf # then jmp to the default label
case 2: stmt,;
movq swtable(,%rax,8),%rax
jmp *%rax
.data
swtable:
.quad L©
.quad L1
.quad L2
text
LO: <stmte>
L1: <stmti>
L2: <stmt>

¥

47

Outline

Arrays

48

UW CSE401/501m-25sp

Arrays

* |n Java, arrays are

+ 0-origin — i.e. an array with n elements indexes them
as a[0] through a[n-1] (a[n] is out of bounds)

+ 1-dimension (Java) — to get more than one dimension,
we use nested arrays (i.e. a[i][j], not a[i,]])

 Regardless of what kind of arrays, the key step is to do
an indexing calculation to guide the load/store

49

UW CSE401/501m-25sp

Arrays (0-based, 1-dimension)

e Source Code

Alternatively...
expi[exp:]
imulg $8,%rdx
* X86-64 # (or use left shift)
<eval exp; into Zrax> addg %rdx,%srax
<eval exp; into Zrdx> movq (%rax),..

if load, then
movq (%rax,%rdx,8),.. # 64-bit array elenm.

if store, then
movq .., (%rax,%rdx,8)

50

UW CSE401/501m-25sp

Arrays of Arrays

* |f we have an array type, we can have Array(Array(T))
e What are the downsides?

+ No way to guarantee that the arrays are rectangular —
we could have ragged arrays

+ Extra memory lookup / indirection cost

e S0, it makes sense to have “native” multi-dimensional
arrays

51

2-dimensional Arrays

e If the language has 2-dimensional arrays, then

+ Are they row-major or column-major?

Row Major

> |

A[1i,]]

A is NxM

Column Major

v
)

 What is the formula for 2d array indexing?

Row Major
&A + 8*(M*1 + j)

52

Column Major
&A + 8*(i + N*j)

UW CSE401/501m-25sp

UW CSE401/501m-25sp

Optimization is...

 Mighty Tempting!

+ “Oh, who will notice if | cut
a little corner here or there?”

* Once you start violating your invariants, you open the
door to all kinds of fiendish & bugs.

* You can pick whatever invariants you want, but you have
to keep your promise to yourself!

+ If it’s an invariant, you can assume it

+ But if it’s in an invariant, then you’re
responsible for guaranteeing it too!

53

UW CSE401/501m-25sp

Next Time...

 Code Generation for Objects (Wed/Fri)
+ How to represent objects
+ How to represent method calls
+ Inheritance and overriding
* Optimization (next Mon)
* Practical Details for Project (next week; Wed/Thu)

54

