Lecture I:

Type Checking &
Basic Code Analysis

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

Administrivia

 HW2 — LR parsing — was due last night
+ try to avoid using up your late days!
 Parser + AST/printing is due next Thurs. May 1
+ How’s it going?
e Mini-HW3 — LL grammars — due MONDAY May 5
+ Homework is available and posted
+ More on LL grammars and hw 3 in sections next Thu
+ Only 1 late day maximum (solutions handout before...)
 Midterm exam on Fri. May 8

+ Topic list and old exams on the website now!

2

UW CSE401/501m-25sp

Administrivia (Monday)

e Parser + AST/printing due Thursday

+ How’s it going?
e Mini-HW3 due next Monday

+ More on LL grammars and hw 3 in sections this Thu
e Midterm exam on Fri. May 8

+ Topic list and old exams on the website now!

Overview

What makes a program “legal”?
The Checking Pass(es)

Symbol Tables & Names

Types

Relationships Between Types
Wrapup

Overview

What makes a program “legal”?

UW CSE401/501m-25sp

What do we need to know to check
and verify that this is a legal program?

class C { class Main {
int a; public static void main() {
C(int initial) { C c = new C(17);
a = initial; c.setA(42);
} }
void setA(int val) { }
a = val;
}

¥

UW CSE401/501m-25sp

What do we need to know to check
and verify that this is a legal program?

class C {
int a;
C(int initial) {
a = initial;

}

void setA(int val) {
a = val;

}

¥

class Main {
public static void main() {
C c = new C(17);
c.setA(42);
}
}

Some Things to Check

no class already declared named C

don’t allow instantiating static classes

int is a type

a hasn’t already been defined

the constructor’s name is the name of the class
check that int is a type

check that the name initial isn’t another argument
check that both variables in line 4 are in scope
(defined)

line 4. check that both types are the same or that
the right-hand-side (RHS) can be cast to the LHS
type

line 4: Make sure that the LHS ‘a’ is mutable

line 4: in the constructor — check that a is
assigned a value (if it were declared as final)

UW CSE401/501m-25sp

Beyond Syntactic Validity

 Not every program that is grammatical can be compiled

<+

4

Has a variable that’s being used been declared?

Do basic data types make sense in arithmetic and boolean
expressions?

In the assignment x=y; is the value of y assignable to x? Is x
something that can be assigned to?

Does a method have the right number and types of arguments?

In a selector p.q, is q a field or method of the type of p?

Is variable x guaranteed to
be initialized before it is used?

Could p be null when p.q is executed?

etc...

UW CSE401/501m-25sp

Beyond Syntactic Validity

 Not every program that is grammatical can be compiled Names

+ Has a variable that’s being used been declared?

+ Do basic data types make sense in arithmetic and boolean
expressions?

In the assignment x=y; is the value of y assignable to x? Is x
something that can be assigned to?

Does a method have the right number and types of arguments?

In a selector p.q, is q a field or method of the type of p?

+ Is variable x guaranteed to Types
be initialized before it is used?

+ Could p be null when p.q is executed?

+ etc...

UW CSE401/501m-25sp

Dynamic vs. Static Errors

e Static errors — your compiler tells you there’s a problem
+ No need to supply a program input
+ Will prevent successful compilation of your program
+ e.g. type checking errors, undefined variables, etc.

* Dynamic errors — your program crashes or behaves in a
bad way

+ May or may not appear, depending on specific input
+ Compiler will let you compile the code

+ e.g. null pointer exception in Java

10

“Strength” of (Type) Checking

Weaker Checks

4 THIS IS FINe.

Stronger Checks

More Dynamic Errors
Less Static Errors

11

“WelLL aCtuALLy"

Less Dynamic Errors
More Static Errors

UW CSE401/501m-25sp

Static-Enough Checking

e Users of a programming language often like dynamic
(type) checking, because it gives them more freedom *#

+ “Yes, my program will crash if | pass in the wrong type,
but | won’t do that!”

e Compiler Implementers often like static (type) checking,
because it gives them more freedom &

+ “Because the checker doesn’t allow programs with
possible problem X___, | don’t need to worry about
generating code to handle _ possible problem X___.”

 Checking allows us to make useful assumptions about
our programs, assumptions we can take advantage of

12

UW CSE401/501m-25sp

Example Checks — Ids & Literals

* Wherever we see a nhame id
+ Check — id has been declared and is in scope

+ Type — based on looking up id
 aliteral — v

+ Check

+ Type — immediate, e.g. 3 is an integer

13

UW CSE401/501m-25sp

Example Checks — Binary Ops

e Binary operator — exp, op exp,

+ Check — exp; and exp, have correct and consistent
types as specified by op.

- e.g. both 4+ and < allow for two integers as
arguments, but not two Booleans. & & is the opposite

+ Type — as specified by op, potentially dependent on
the types of the arguments.

- e.g. + with integer arguments produces an integer,
whereas < and & & always produce Booleans.

14

UW CSE401/501m-25sp

Example Checks — Assignment

e Assignment — exp, = exp,
+ Check — exp, can be assigned to (is a valid Ivalue)

+ Check — the type of exp, can be coerced into the type
of exp,

- If the types exp, and exp, are the same, or

- e.g. integers can be converted into doubles, or

- exp, is a subclass of exp;,

+ Type — Statements don’t have types

15

UW CSE401/501m-25sp

Example Checks — Cast

o Cast — (exp,) exp,
+ Check — exp, is a type
+ Check — exp, can be coerced into the type of exp,
- same as for assignment (upcast, coercion, etc.)

- (depending on language) downcast — exp; is a
subclass of the type of exp,; in this case the

execution of the cast may trigger an error or return a
null pointer at runtime (depending on language)

+ Type — the resulting type is exp,

16

UW CSE401/501m-25sp

Example Checks — Fields

o Cast — exp,.f
+ Check — the type of exp, is a class C
+ Check — f is actually a field of C (or a superclass)

+ Type — based on looking up f in C

17

UW CSE401/501m-25sp

Example Checks — Methods

e Method Call — exp,.m(e;, e, .., €,)

+ Check — the type of exp, is a class C which has a
method named m (inherited or directly)

+ Check — the method m has n parameters

+ Check — each argument ¢, has a type that can be
assigned to the associated parameter of method m

- same as for assignment (upcast, coercion, etc.)

+ Type — type is given by declaration of method m

18

UW CSE401/501m-25sp

Example Checks — Return

e Method Call — return exp; or return;

+ Check — If the method this statement is in has a return
type T, then the type of exp must be assignable to 7.

+ Check — if the method has void return type, then
there should not be a returned expression.

+ Type — statements don’t have types

19

Overview

The Checking Pass(es)

20

UW CSE401/501m-25sp

Where we are in the Compiller

N\ N\
| AST + Types |
Checker) +Symbol
J Tables
/ /

!\

)Backend

 Unlike the Scanner & Parser, the Checker usually does

not discard anything from the AST

 What structure does the Checking pass introduce?

+ Symbol Tables — i.e. management of names

+ Type Information

e Lastly, what information does the next pass need?

21

UW CSE401/501m-25sp

The Front-to-Back-end Jump

\\ \\
AST + Types
front- Lower- back-
end +Symbol | to Backend Level IR end
Tables |
_/ / l/

* When we get to the lecture on IRs, we will talk about what

“Lower-Level IR” might be

+ For now, key point — the backend does not know what

objects, classes, and other OO concepts are

* The pass that takes us to the Backend must discard the
OO concepts. This will require making decisions about
the memory layout of data structures & objects

22

UW CSE401/501m-25sp

Decisions About How to
Compile Away OO Concepts

* Where are fields allocated in an object?

e How big are objects? (i.e. how many bytes need to be
allocated when calling new Thing(...) ?)

e \Where are local variables stored while a method is called?

 Which methods are associated with an object/class?

+ How do we determine which method to call based on
the run-time type of an object?

23

-

_

N

N

Name

AST Resolve

+ \7
Type-
Chec

Symbol
Tables

¢ T

Types

Mem.
Layout

4

e My recommendation (3-4 passes)

4

+ Passes 1 & 2 — Symbol & Name Resolution

+ Pass 3 — Typechecking

+ Pass 4 — Memory Layout

UW CSE401/501m-25sp

Checking Pass(es) Proposal

==

Layout
Data

~

S

* |Important! WAIT until the code-gen project to work on

memory layout

24

UW CSE401/501m-25sp

Reporting an ERROR in a Compiler

* There are 2 main kinds of compiler error
+ Blame the user — the input program is not valid
+ Blame the compiler — the compiler itself is incorrect

e Validity errors can be further distinguished — e.g. scanner
vS. parser vs. undefined variable vs. type checking errors

e After a program exits checking, any errors are not the
user’s fault any more!

+ Input Validation — a good system design principle!

e (Practical) Compiler projects should define distinct error
reporting mechanisms for each type of error!

25

Overview

Symbol Tables & Names

26

UW CSE401/501m-25sp

Scopes / Namespaces

public class C {

int Xx;] :
public int run(int x) { Q: _IS_ this legal
return x(x) + y(x); (Mini)Java code?
}
public int x(int y) {
X =Y,
return 0;
}

public int y(int y) {
return x + vy;

}
}

public class Main {
public static void main(String[] args) {
System.out.println((new C()).run(42));

¥
¥

27

Scopes / Namespaces

public class C {

int Xx;
public int run(int x) {
return |x(X) € V(X ..
) xCoJ« v ——~Why is it legal for
public int x(int y) { a function and
X =Y; variable to have
return 0;

} the same name?
public [int y(int y)|d— —

return x + vy;

¥

public class Main {

public static void main(String[] args) {
System.out.println((new C()).run(42));

¥

28

UW CSE401/501m-25sp

Scopes / Namespaces

public class C {
int x;

pubiic int run(int x)
return [x(x) + y(x);
} Which
public int x(int variable x
X =;

return 0; doeS thIS
} refer to?
public int y(int

[return x + y;
}

¥

public class Main {
public static void main(String[] args) {
System.out.println((new C()).run(42));

¥
¥

29

UW CSE401/501m-25sp

UW CSE401/501m-25sp

Namespaces

e Many programming languages distinguish between
names used in distinct grammatical contexts.

+ e.g. in the expression x(x), the first x must be a

method name because we’re calling it, and the second
X must be a variable name because it’s an argument

expression

* This implies that different namespaces use different
symbol tables (i.e. different data structures for resolving
name lookups)

30

UW CSE401/501m-25sp

Scopes

If we are looking up a variable name within a particular
method, where do we look first?

If we can’t find a variable name declared as a /ocal
variable or formal argument to the method, then where
should we look next?

If we can’t find a variable name declared as a field of the
class we’re in, where should we look next?

Different scopes have different symbol tables (e.g. x can
be both a local variable and class field) but scopes are
nested. If we can’t find the id we’re looking for in one
scope, then we keep widening the scope to find it.

+ until we reach the outermost scope; then we’re done

31

UW CSE401/501m-25sp

Symbol Tables

A map from identifiers to other information

+ identifier — a name (string) or symbol (object standing
in for a string)

+ other information — e.g. types, memory layout data,
pointers to other parts of the code, etc.

* Required Features
+ Lookup(id) — returns information or “no match”
+ Add(id, information) — create an entry in the table

+ Wider Scopes — if there is “no match” should we look
elsewhere before giving up?

32

UW CSE401/501m-25sp

Implementing Symbol Tables

* |n old-school compiler courses, this was a big topic
+ i.e. how to implement a hash table

* Today, use some combination of standard container data
structures

+ In Java, HashMap (mainly) and ArrayList (as needed)
* Not just a HashMap!

+ e.g. symbol tables need to track where to redirect
lookups to

Name Info

+ on project — think about it
What’s a good design?

Visual shorthand

- for a Symbol Table

UW CSE401/501m-25sp

Representing Identifiers/Names

e Option 1 — leave as strings
+ Pro — simple; retains name from source

+ Con — ambiguous; need to keep resolving scope in all
passes

+ Con — inefficient; string comparison is expensive

+ “+*— definitely don’t do in a real
compiler

34

UW CSE401/501m-25sp

Representing Identifiers/Names

e Option 2 — Convert Strings to unigue numeric IDs

+ Use a global table to maintain the string <> ID-number
mapping; table has newId(string name) method

+ Pro — more efficient than strings (compare numbers)

+ Con — still ambiguous; requires repeating scope
resolution

+ — ok, but we can do better...

35

UW CSE401/501m-25sp

Representing Identifiers/Names

e Option 3 — Convert Strings to (Symbol) Objects

*

Have tables maintain the string <> object mapping

instead. (Symbol) Objects store a unique ID at
minimum; potentially other data as well

Important! — Designate ONE PASS as responsible for
all string to symbol conversion (to prevent errors)

Pro — now unambiguous, regardless of scope; just as
efficient (compare pointers)

Con — most involved solution (not a big con)

— Do this on serious projects

36

UW CSE401/501m-25sp

Minidava Design (Recommended)

e We’ll outline a scheme that does what we need here, but
you are not required to do things this way. Enjoy your
freedom *#!

 \WWe may cover a few more features here than are strictly

needed for the Minidava project — want to cover basic
ideas too

37

UW CSE401/501m-25sp

Minidava Design — Scopes

public class C {
int Xx;
public int run(int x) {
return x(x) + y(x);
}
public int x(int y) {
X =Y,
return 9;
}
public int y(int y) {
return x + vy;
}
}

public class Main {
public static void main(String[] args) {
System.out.println((new C()).run(42));

¥
¥

38

UW CSE401/501m-25sp

Minidava Design — Scopes

public class C { Global
int x; Scope
public int run(int x) {
return x(x) + y(x);
public int x(int y) { Class
X = VY;
return 0; Scope
public int y(int y) {
return x + vy,
}
ublic class Main
P { Method

public static void main(String[] args) {
System.out.println((new C()).run(42)); Scope

}
¥

UW CSE401/501m-25sp

Minidava Design — Namespaces

public class C { Global
int x; Scope

public int run(int x) { Class
return x(x) + y(x); Namespace

public int x(int y) { Class
X =Y,
return 0; Scope
Field
public int y(int y) { Namespace
} return x + vy, Method
Namespace
ublic class Main
P ¢ Method

public static void main(String[] args) {
System.out.println((new C()).run(42)); Scope

} Variable
} Namespace

Minidava Design
Symbol Table Hierarchy

(class scope)

(global scope) Method |Info ®
> Class Name | Info ®
®
® > ®
° Lﬂ Variable |Info
Field |Info
[— —
®
i i o
Disclaimer ®
This diagram is for
pedagogical purposes. v Vv
Your actual —> MViethod miol | ¥ v |V
implementation may ethod |Into . v
be very different. Variable Type,

UW CSE401/501m-25sp

(method scope)

—>| Variable |Info

41

Data, etc.

UW CSE401/501m-25sp

Minidava Design

Adding Fields to AST Nodes public class Foo {

_ public void run() {
e Suppose we look up variable =

x during a checking pass and }
find it is an object of type C L
(where C is a class) public class C {.}

* When we get to a later pass in the compiler, should we
look up the type of x again?

* Unless we have somewhere to store the type of x we will
have to look up the type repeatedly, which is error-prone

+ Design AST nodes to remember types, and possibly
other references to symbol tables (& vice versa?)

+ see AST lecture for more — just mutate field for project

42

UW CSE401/501m-25sp

Recursion / Cyclic Symbol Tables

e Consider the class definition
public class X { X child; .. }

+ The class table for X has a field child, which has an
object type X, which has a class table, which ...

* How do we handle recursive definitions using structurally
recursive compiler passes over an AST?

+ pass 1 — Create some objects / symbol tables, but
leave some details missing (e.g. create global, class,
and method symbol tables, but don’t fill out types)

+ pass 2 — Fill in the rest of the details, using results of
pass 1 to “tie the knot” on any cycles (e.g. now fill out

types)

43

UW CSE401/501m-25sp

Names, Beyond Minidava

 There are 2 hard problems in Computer Science

+ Naming things, Cache Invalidation, and off-by-one
errors

e |Inreal Java, we can declare variables inside nested
scopes (if-then, while, etc.)

+ This requires deeper hierarchies of symbol tables
reflecting the { block } structure of source code

e Java encapsulation features (static, private, public,
protected, import, etc.) require more complex rules/
handling of name lookups

44

UW CSE401/501m-25sp

RN

Engineering advice

* When managing any kind 3] Variable |Info
of nested scope, where Method |Info
you want to redirect o

unsuccessful lookups to
an outer scope, it’s a
good idea to maintain an
explicit redirection
pointer

Field [Info

* |f your scopes may become deeply nested, then you
probably want to eventually optimize this redirection
mechanism to ensure O(1) amortized lookup cost (see a
compiler textbook for ideas)

45

UW CSE401/501m-25sp

Error Reporting Advice

e What do we do if a name lookup fails, and all redirected
lookups fail? Report an error!

+ Our Goal — say “x undefined” only once! (why?)
* \We can do this using undefined objects/types

+ When a lookup fails, report an error and add an
undefined object or type as the “information” in that
symbol table

+ How does this help?

46

UW CSE401/501m-25sp

Predefined Global Entries

e |n full Java, some ideas are pre-defined / “built in” to the
language. e.g. Object is a special class.

+ Object is not part of the Java grammar (not a keyword)
e.g. int Object = 32; foo(Object); islegal Java

+ Object cannot be defined in a standard library file
why not?

* Solution — pre-populate the global symbol table with a
“built-in” class named Object.

+ Minimizes special case logic in the compiler (recall the
Expression Problem), but we can still special case as
needed — e.qg. every class is a subclass of Object

47

Overview

Types

48

UW CSE401/501m-25sp

Why Types? (Naively)

e What is the meaning of x + y?
+ If x and y are integers, then x + y is their sum

+ If x and y are strings, then x + y is the concatenation

e “At the end of the day everything is just bits”
+ Does x + y mean add bits as 2s-complement integers?
+ Does x + y mean add bits as IEEE 754 doubles?

+ The two additions are different assembly instructions
and very different circuits on your processor!

® meaning — basic data types are necessary to say what
the meaning of the bits you are computing on is!

49

UW CSE401/501m-25sp

Why Types?

e Safety — types allow for error detection

* Expressiveness — overloaded methods and operators
can make code nicer to write

+ e.g.X + yvs.add int(x,y)
e Optimization — more information for the compiler

+ Allows the compiler to make useful assumptions about
the program

+ e.g. qualifiers like const, final, restrict (in C)

+ note — qualifiers don’t change the meaning of the data;
they only change what is permissible to do with it

50

Strong vs. Weak vs. | Recommendation:

Not a well-defined

Static vs. Dynamic or usefut

e Static vs. Dynamic Typing distinction; avoid

+ static — means checks done at compile time
+ dynamic — means checks done at runtime

e Strong vs. Weak Typing

+ strong — exceptional / error behavior of the language
Is well specified

+ weak — meaning of the language is poorly specified

* Weak typing is a huge problem for legacy code bases
(e.g. C/C++) — a major source of security vulnerabilities

 Weakly typed languages arose from a desire for
performance at the “expense of safety”

51

Correcting Our Earlier Picture

Dynamic
Typing

Static
: Typing

"WeLL aCtuALLy"

52

UW CSE401/501m-25sp

Base vs. Constructed Types

e base / primitive types
+ e.g. int, double, char, boolean

+ Iintroduction of many new floating point types has made
this very complicated!

 constructed / compound types
+ built from other types, recursively (like grammars!)
+ This allows for user-defined types
+ e.g. records / structs / classes

+ e.qg. arrays, pointers, function types, etc.

53

UW CSE401/501m-25sp

Encoding Types (in a Compiler)

* 100s-1000s of research papers on types all use a BNF
variant to specify what types can be formed

+ This is the same idea of an “abstract grammar” we saw
when discussing ASTs

* €.0. type::=int | Dboolean | ...

| Record(entry™)
| Ptr(type) | Array(type) | Func(formal™, type)
entry ::= (name, type)
formal ::= (name, type)

* Thus, we can use the same ideas (a class hierarchy) we
learned for representing ASTs earlier

54

UW CSE401/501m-25sp

AST Nodes vs. Types

 (Minidava) The Minidava AST Nodes include types, in
order to represent the output of the parser (as an AST)

+ You MUST define a separate hierarchy of type objects
(called ADT = Abstract Data Type in previous quarters)

e Reason 1 — “terms” depend on “types” not vice-versa

+ Most languages allow statements and expressions to
include/refer to types — e.g. int x = 0;

+ Most languages do not allow types to include/refer to
expressions or statements — e.g. Array<x + y>

e Reason 2 — we will want to define helper methods on
types (e.g. are two types equal? assignable? etc.)

55

UW CSE401/501m-25sp

Base Types

type ::= int | boolean | ...
* Implementation — use singleton classes, create a
canonical object for each base type.

e Special cases you might want

+ void — defining a void type allows one to say that all
methods/functions have a return type (potentially void)

+ error/unknown — the same idea as unknown objects

for symbol tables; track where an error has already
been reported

+ How is error/unknown different from void?

56

UW CSE401/501m-25sp

Struct / Record Types

type ::= ... | Record(entry™) | ...

entry ::= (name, type)

e a struct or record type is built from a list of constituent
types with names/labels for each entry. (e.g. C structs)

+ values are built from values for each entry sub-type

* e.g.{a=3, b=2.4, c=true} is a value
of type Record((a, int), (b, double), (c, boolean))

e Structs/Records are like classes, but without any
functions or inheritance

+ |In Java, we just use classes instead

57

UW CSE401/501m-25sp

Method / Function Types

type := ... | Func(formal® args, type return) | ...

formal ::= (name, type)

* The type of a function (aka. its signature) is specified by

giving an ordered list of its arguments (with their types)
and a return type

* In (Mini)dava, we might simply use the associated method

object, including its symbol tables and any other relevant
data.

58

UW CSE401/501m-25sp

Class Types

type = ... | Class(entry®, func-type*, cls-type’ super) | ...

entry ::= (name, type)

* A class type is very similar to a struct type, except it also
iIncludes a list of function signatures and optionally a
super-class.

+ In Java, there is always a superclass (except Object)

 For Minidava, it is much easier to use a very simple
ClassType with a single field, pointing to the symbol
table/object representing the class in question.

+ Note — this is where the types can become recursive
(see last lecture for how to handle)

59

UW CSE401/501m-25sp

Array lypes

type = ... | Array(type) | ...

* Array types specify that there is an array of objects/values
of the specified type

e Sometimes, a constant size for the array is known;
usually not. In Minidava, we don’t know array length.

e What is Array(Array(int)) ?

e Some other languages support explicit multi-dimensional
arrays; common in numeric computing (e.g. Fortran,
Matlab, Numpy in Python, etc.)

60

Overview

Relationships Between Types

61

UW CSE401/501m-25sp

How are Types Related?

 Equivalence — two types are “the same”
e Subtyping

+ Liskov Substitution Principle — if A can always

substitute for B, then A is a subtype of B

 Language specs can be more of a mess

+ “is the same as”

+ “Is assignhable to”

+ “Is a subclass or equal to”

+ “Is convertible to”

62

UW CSE401/501m-25sp

Type Equivalence

 Base types are equal if they’re the same (e.g. int = int)
and not equal otherwise

+ (if representing with singletons, comparison is trivial)

e Constructed Types

+ Nominal Equivalence — two types are the same only if
they have literally the same name (requires the type
constructor to supply a name, as in class C)

+ Structural Equivalence — two types are the same if
they are the same constructor and all of their
component/constituent types (recursively) are the same

63

UW CSE401/501m-25sp

Nominal vs. Structural Equivalence

* Type constructors that use nominal equivalence
+ Classes

* Jype constructors that use structural equivalence
+ Records/Structs (sometimes)
+ Pointers
+ Arrays
+ Functions

* In OO languages, nominal equivalence of classes solves a
nasty problem with recursive types (no time to cover)

64

UW CSE401/501m-25sp

Implementation of Type Equality

e Nominal — (assume classes)

+ 1, =157 — If both T and 75 are class types, for the

same class (i.e. has the same name) then they are
equal. Otherwise they are not.

e Structural

+ 11 =157 — If both T| and T, are the same type

constructor and all constituent types are also equal,
then they are equal. Otherwise they are not.

+ We can compare recursively, but then comparison is
not guaranteed to be O(1) ...

65

UW CSE401/501m-25sp

Efficient Structural Comparisons

* Instead of comparing recursively, we can make sure every
type has a unigque representation — then equality
comparison becomes trivial

 |dea — instead of simply constructing types (from other
types) store a table of already constructed types; if you
can find an already constructed, structurally equivalent
object, then return that existing object instead of creating
a new one. (similar to how we use symbol tables)

e known as hash-cons or memoization

+ This is a very powerful and broadly applicable trick in
compiler construction

66

UW CSE401/501m-25sp

Dynamic vs. Static Type of Objects

e Consider this code

class C {..}
class D extends C {..}
w { .. C X =newD(); ... } ..

 What type does x have?
 \What static type (aka compile time type) does x have?
 What dynamic type (aka runtime type) does x have?

* Does the checking pass of the compiler reason about
static or dynamic types?

67

UW CSE401/501m-25sp

Casting and Coercing Types

e Type Cast — an explicitly written conversion of data from
one type to another

e Type Coercion — an implicitly introduced conversion of
data from one type to another

* Different languages have different rules for allowable type
conversions, and whether a particular conversion can be
a coercion or must be an explicit cast
+ Minidava does not have type casts to simplify this all
for you — but you can still assign objects of type A to
variables of (static) type B, when A is a sub-class of B

68

UW CSE401/501m-25sp

Coercions and Typechecking

e |If a language supports type coercions, it is the
responsibility of the type-checker to insert explicit
type casts into the AST wherever a coercion is required.

+ Why should we design things this way?

* Type checking actually does discard something. It
discards type coercions, which are implicit and thus
don’t appear as nodes or fields in the IR.

+ Thus, all passes after type checking have one less thing
they need to worry about!

+ This is another important way the compiler pass
architecture works — can make assumptions!

69

UW CSE401/501m-25sp

Type Conversions (Primitives)

 Base Types (usually number types)

+ What does it mean to convert between int and
unsigned int? between int and double?

 Base type conversions may simply reinterpret bits

 Or they may imply actual computation (i.e. generate code)

70

UW CSE401/501m-25sp

Type Conversions (Refs/Pointers)

e InC, (int*)foo doesn’t check what type T* foo is

* In Java
+ Casting to a super-type is allowed (and coercible)
+ What about casting to a sub-type?
+ down-casting introduces a runtime (dynamic) check

+ however, down-casting to a class that isn’t a sub-type
causes a compile time (static) error!

e |n C++

+ Different keywords and features support all of the
above

71

UW CSE401/501m-25sp

Useful Functions on Types

* Make sure all classes representing types in the compiler
support a basic set of comparison methods

+ are the types equal?
+ is 1| assignable to 715 ?
* "

 Why should we do this?

e “Single source of truth” — code that defines what
“assignable” means is grouped in one place, reducing the
opportunity for errors arising from inconsistency

e Put this in your new Minidava type package

72

Overview

Wrapup

73

UW CSE401/501m-25sp

Checker Pass(es) — Simple

-

_

AST

N

Pass 1

+
Class
Symbol
Tables

TN

|

)

Pass 2

L

* One likely minimal design teams will use

4

~

+ Sym
Tables
& Types

S

+ pass 1 — do some of name resolution; at least classes

+ pass 2 — do rest of name resolution and all of type
checking

74

-

N

N

Name

AST Resolve

=

Symbol
Tables

Type-

Chec Types

¢ T

Mem.
Layout

4

Pass 1 — First half of name resolution (at least classes)
Pass 2 — Second half of name resolution

Pass 3 — Typechecking

4

Pass 4 — Memory Layout

Important! DON’T DO MEMORY LAYOUT NOW wait
until the code-gen project to work on memory layout

75

UW CSE401/501m-25sp

Checker Pass(es) — Conceptual

==

Layout
Data

~

S

UW CSE401/501m-25sp

Disclaimer(s)

* This overview of checking, name, and types should give
you a decent idea of what needs to be done in your
project for the checker part of the project.

+ You’ll need/want to adapt the ideas and advice here to
fit what makes sense to you!

+ Enjoy your freedom *#!

 You’ll find good ideas in your compiler book too

e These slides also cover more than is needed for our
specific project

76

UW CSE401/501m-25sp

Next Time...

* How should we start translating our code into x867
 \What does a typical compiler do with the backend?

+ (Friday) What IRs (Intermediate Representations) do
compilers use in their back-ends?

+ (last 3 weeks of quarter) How does the backend of the
compiler optimize code?

 What will our Minidava compiler do?

+ (next 2 weeks) Review of x86 assembly & direct
translation from the AST to x86 code

7

