
UW CSE401/501m-25sp

Lecture I:

Type Checking & 
Basic Code Analysis
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

• HW2 — LR parsing — was due last night

✦ try to avoid using up your late days!

• Parser + AST/printing is due next Thurs. May 1

✦ How’s it going?

• Mini-HW3 — LL grammars — due MONDAY May 5

✦ Homework is available and posted

✦ More on LL grammars and hw 3 in sections next Thu

✦ Only 1 late day maximum (solutions handout before…)

• Midterm exam on Fri. May 8

✦ Topic list and old exams on the website now!

Administrivia

2

UW CSE401/501m-25sp

• Parser + AST/printing due Thursday

✦ How’s it going?

• Mini-HW3 due next Monday

✦ More on LL grammars and hw 3 in sections this Thu

• Midterm exam on Fri. May 8

✦ Topic list and old exams on the website now!

Administrivia (Monday)

3

UW CSE401/501m-25sp

What makes a program “legal”?

The Checking Pass(es)

Symbol Tables & Names

Types

Relationships Between Types

Wrapup

Overview

4

UW CSE401/501m-25sp

What makes a program “legal”?
The Checking Pass(es)

Symbol Tables & Names

Types

Relationships Between Types

Wrapup

Overview

5

UW CSE401/501m-25sp

class	C	{

		int	a;

		C(int	initial)	{

				a	=	initial;

		}

		void	setA(int	val)	{

				a	=	val;

		}

}

What do we need to know to check
and verify that this is a legal program?

6

class	Main	{

		public	static	void	main()	{

				C	c	=	new	C(17);

				c.setA(42);

		}

}

UW CSE401/501m-25sp

class	C	{

		int	a;

		C(int	initial)	{

				a	=	initial;

		}

		void	setA(int	val)	{

				a	=	val;

		}

}

class	Main	{

		public	static	void	main()	{

				C	c	=	new	C(17);

				c.setA(42);

		}

}

What do we need to know to check
and verify that this is a legal program?

7

Some Things to Check
no class already declared named C

don’t allow instantiating static classes

int is a type

a hasn’t already been defined

the constructor’s name is the name of the class

check that int is a type

check that the name initial isn’t another argument

check that both variables in line 4 are in scope
(defined)

line 4: check that both types are the same or that
the right-hand-side (RHS) can be cast to the LHS
type

line 4: Make sure that the LHS ‘a’ is mutable

line 4: in the constructor — check that a is
assigned a value (if it were declared as final)

UW CSE401/501m-25sp

• Not every program that is grammatical can be compiled

✦ Has a variable that’s being used been declared?

✦ Do basic data types make sense in arithmetic and boolean

expressions?

✦ In the assignment x=y; is the value of y assignable to x? Is x

something that can be assigned to?

✦ Does a method have the right number and types of arguments?

✦ In a selector p.q, is q a field or method of the type of p?

✦ Is variable x guaranteed to 

be initialized before it is used?

✦ Could p be null when p.q is executed?

✦ etc…

Beyond Syntactic Validity

8

UW CSE401/501m-25sp

• Not every program that is grammatical can be compiled

✦ Has a variable that’s being used been declared?

✦ Do basic data types make sense in arithmetic and boolean

expressions?

✦ In the assignment x=y; is the value of y assignable to x? Is x

something that can be assigned to?

✦ Does a method have the right number and types of arguments?

✦ In a selector p.q, is q a field or method of the type of p?

✦ Is variable x guaranteed to 

be initialized before it is used?

✦ Could p be null when p.q is executed?

✦ etc…

Beyond Syntactic Validity

9

Names

Types

Runtime?

UW CSE401/501m-25sp

• Static errors — your compiler tells you there’s a problem

✦ No need to supply a program input

✦ Will prevent successful compilation of your program

✦ e.g. type checking errors, undefined variables, etc.

• Dynamic errors — your program crashes or behaves in a
bad way

✦ May or may not appear, depending on specific input

✦ Compiler will let you compile the code

✦ e.g. null pointer exception in Java

Dynamic vs. Static Errors

10

UW CSE401/501m-25sp

“Strength” of (Type) Checking

11

Weaker Checks Stronger Checks

More Dynamic Errors

Less Static Errors

Less Dynamic Errors

More Static Errors

UW CSE401/501m-25sp

• Users of a programming language often like dynamic
(type) checking, because it gives them more freedom 🦅

✦ “Yes, my program will crash if I pass in the wrong type,

but I won’t do that!”

• Compiler Implementers often like static (type) checking,
because it gives them more freedom 🦅

✦ “Because the checker doesn’t allow programs with

___possible problem X___, I don’t need to worry about
generating code to handle ___possible problem X___.”

• Checking allows us to make useful assumptions about
our programs, assumptions we can take advantage of

Static-Enough Checking

12

UW CSE401/501m-25sp

• Wherever we see a name id

✦ Check — id has been declared and is in scope

✦ Type — based on looking up id

• a Literal — v
✦ Check
✦ Type — immediate, e.g. 3 is an integer

Example Checks — Ids & Literals

13

UW CSE401/501m-25sp

• Binary operator —

✦ Check — and have correct and consistent
types as specified by .

- e.g. both and allow for two integers as
arguments, but not two Booleans. is the opposite

✦ Type — as specified by , potentially dependent on
the types of the arguments.

- e.g. with integer arguments produces an integer,
whereas and always produce Booleans.

exp1 op exp2

exp1 exp2
op

+ <
&&

op

+
< &&

Example Checks — Binary Ops

14

UW CSE401/501m-25sp

• Assignment — =

✦ Check — can be assigned to (is a valid lvalue)

✦ Check — the type of can be coerced into the type
of

- if the types and are the same, or

- e.g. integers can be converted into doubles, or

- is a subclass of

✦ Type — Statements don’t have types

exp1 exp2

exp1

exp2
exp1

exp1 exp2

exp2 exp1

Example Checks — Assignment

15

UW CSE401/501m-25sp

• Cast — ()

✦ Check — is a type

✦ Check — can be coerced into the type of

- same as for assignment (upcast, coercion, etc.)

- (depending on language) downcast — is a
subclass of the type of ; in this case the
execution of the cast may trigger an error or return a
null pointer at runtime (depending on language)

✦ Type — the resulting type is

exp1 exp2

exp1

exp2 exp1

exp1
exp2

exp1

Example Checks — Cast

16

UW CSE401/501m-25sp

• Cast — .

✦ Check — the type of is a class

✦ Check — is actually a field of (or a superclass)

✦ Type — based on looking up in

exp1 f

exp1 C

f C
f C

Example Checks — Fields

17

UW CSE401/501m-25sp

• Method Call — .m(,	 ,	…,)

✦ Check — the type of is a class which has a
method named m (inherited or directly)

✦ Check — the method m has parameters

✦ Check — each argument has a type that can be
assigned to the associated parameter of method m

- same as for assignment (upcast, coercion, etc.)

✦ Type — type is given by declaration of method m

expb e1 e2 en

expb C

n

ei

Example Checks — Methods

18

UW CSE401/501m-25sp

• Method Call — return ; or return;

✦ Check — If the method this statement is in has a return

type , then the type of must be assignable to .

✦ Check — if the method has void return type, then

there should not be a returned expression.

✦ Type — statements don’t have types

exp

T exp T

Example Checks — Return

19

UW CSE401/501m-25sp

What makes a program “legal”?

The Checking Pass(es)
Symbol Tables & Names

Types

Relationships Between Types

Wrapup

Overview

20

UW CSE401/501m-25sp

to
Backend

AST + Types
+ Symbol

Tables

• Unlike the Scanner & Parser, the Checker usually does
not discard anything from the AST

• What structure does the Checking pass introduce?

✦ Symbol Tables — i.e. management of names

✦ Type Information

• Lastly, what information does the next pass need?

Where we are in the Compiler

21

Scanner
& ParserSo

ur
ce

C

od
e

AST Checker

UW CSE401/501m-25sp

Lower-
Level IR

back-
end

• When we get to the lecture on IRs, we will talk about what
“Lower-Level IR” might be

✦ For now, key point — the backend does not know what

objects, classes, and other OO concepts are

• The pass that takes us to the Backend must discard the
OO concepts. This will require making decisions about
the memory layout of data structures & objects

The Front-to-Back-end Jump

22

to Backend
AST + Types

+ Symbol
Tables

front-
end

UW CSE401/501m-25sp

• Where are fields allocated in an object?

• How big are objects? (i.e. how many bytes need to be
allocated when calling new	Thing(…) ?)

• Where are local variables stored while a method is called?

• Which methods are associated with an object/class?

✦ How do we determine which method to call based on

the run-time type of an object?

Decisions About How to
Compile Away OO Concepts

23

UW CSE401/501m-25sp

• My recommendation (3-4 passes)

✦ Passes 1 & 2 — Symbol & Name Resolution

✦ Pass 3 — Typechecking

✦ Pass 4 — Memory Layout

• Important! WAIT until the code-gen project to work on
memory layout

Checking Pass(es) Proposal

24

+
Layout
Data

Type-
Check

+
Symbol
Tables

Name
ResolveAST Mem.

Layout

+ 
Types

UW CSE401/501m-25sp

• There are 2 main kinds of compiler error

✦ Blame the user — the input program is not valid

✦ Blame the compiler — the compiler itself is incorrect

• Validity errors can be further distinguished — e.g. scanner
vs. parser vs. undefined variable vs. type checking errors

• After a program exits checking, any errors are not the
user’s fault any more!

✦ Input Validation — a good system design principle!

• (Practical) Compiler projects should define distinct error
reporting mechanisms for each type of error!

Reporting an ERROR in a Compiler

25

UW CSE401/501m-25sp

What makes a program “legal”?

The Checking Pass(es)

Symbol Tables & Names
Types

Relationships Between Types

Wrapup

Overview

26

UW CSE401/501m-25sp

public	class	C	{

		int	x;

		public	int	run(int	x)	{

				return	x(x)	+	y(x);

		}

		public	int	x(int	y)	{

				x	=	y;

				return	0;

		}

		public	int	y(int	y)	{

				return	x	+	y;

		}

}

public	class	Main	{

		public	static	void	main(String[]	args)	{

				System.out.println((new	C()).run(42));

		}

}

Scopes / Namespaces

27

Q: Is this legal
(Mini)Java code?

UW CSE401/501m-25sp

public	class	C	{

		int	x;

		public	int	run(int	x)	{

				return	x(x)	+	y(x);

		}

		public	int	x(int	y)	{

				x	=	y;

				return	0;

		}

		public	int	y(int	y)	{

				return	x	+	y;

		}

}

public	class	Main	{

		public	static	void	main(String[]	args)	{

				System.out.println((new	C()).run(42));

		}

}

Scopes / Namespaces

28

Why is it legal for
a function and
variable to have
the same name?

UW CSE401/501m-25sp

public	class	C	{

		int	x;

		public	int	run(int	x)	{

				return	x(x)	+	y(x);

		}

		public	int	x(int	y)	{

				x	=	y;

				return	0;

		}

		public	int	y(int	y)	{

				return	x	+	y;

		}

}

public	class	Main	{

		public	static	void	main(String[]	args)	{

				System.out.println((new	C()).run(42));

		}

}

Scopes / Namespaces

29

Which
variable x
does this
refer to?

UW CSE401/501m-25sp

• Many programming languages distinguish between
names used in distinct grammatical contexts.

✦ e.g. in the expression x(x), the first x must be a

method name because we’re calling it, and the second
x must be a variable name because it’s an argument
expression

• This implies that different namespaces use different
symbol tables (i.e. different data structures for resolving
name lookups)

Namespaces

30

UW CSE401/501m-25sp

• If we are looking up a variable name within a particular
method, where do we look first?

• If we can’t find a variable name declared as a local
variable or formal argument to the method, then where
should we look next?

• If we can’t find a variable name declared as a field of the
class we’re in, where should we look next?

• Different scopes have different symbol tables (e.g. x can
be both a local variable and class field) but scopes are
nested. If we can’t find the id we’re looking for in one
scope, then we keep widening the scope to find it.

✦ until we reach the outermost scope; then we’re done

Scopes

31

UW CSE401/501m-25sp

• A map from identifiers to other information
✦ identifier — a name (string) or symbol (object standing

in for a string)

✦ other information — e.g. types, memory layout data,

pointers to other parts of the code, etc.

• Required Features

✦ Lookup(id) — returns information or “no match”

✦ Add(id, information) — create an entry in the table

✦ Wider Scopes — if there is “no match” should we look

elsewhere before giving up?

Symbol Tables

32

UW CSE401/501m-25sp

• In old-school compiler courses, this was a big topic

✦ i.e. how to implement a hash table

• Today, use some combination of standard container data
structures

✦ In Java, HashMap (mainly) and ArrayList (as needed)

• Not just a HashMap!

✦ e.g. symbol tables need to track where to redirect

lookups to

✦ on project — think about it 

What’s a good design?

Implementing Symbol Tables

33

Name Info
…
…

Visual shorthand 
for a Symbol Table

UW CSE401/501m-25sp

• Option 1 — leave as strings

✦ Pro — simple; retains name from source

✦ Con — ambiguous; need to keep resolving scope in all

passes

✦ Con — inefficient; string comparison is expensive

✦ Recommendation 👎— definitely don’t do in a real

compiler

Representing Identifiers/Names

34

UW CSE401/501m-25sp

• Option 2 — Convert Strings to unique numeric IDs

✦ Use a global table to maintain the string ID-number

mapping; table has newId(string	name) method

✦ Pro — more efficient than strings (compare numbers)

✦ Con — still ambiguous; requires repeating scope

resolution

✦ Recommendation — ok, but we can do better…

↔

Representing Identifiers/Names

35

UW CSE401/501m-25sp

• Option 3 — Convert Strings to (Symbol) Objects

✦ Have tables maintain the string object mapping

instead. (Symbol) Objects store a unique ID at
minimum; potentially other data as well

✦ Important! — Designate ONE PASS as responsible for
all string to symbol conversion (to prevent errors)

✦ Pro — now unambiguous, regardless of scope; just as
efficient (compare pointers)

✦ Con — most involved solution (not a big con)

✦ Recommendation — Do this on serious projects

↔

Representing Identifiers/Names

36

UW CSE401/501m-25sp

• We’ll outline a scheme that does what we need here, but
you are not required to do things this way. Enjoy your
freedom 🦅!

• We may cover a few more features here than are strictly
needed for the MiniJava project — want to cover basic
ideas too

MiniJava Design (Recommended)

37

UW CSE401/501m-25sp

public	class	C	{

		int	x;

		public	int	run(int	x)	{

				return	x(x)	+	y(x);

		}

		public	int	x(int	y)	{

				x	=	y;

				return	0;

		}

		public	int	y(int	y)	{

				return	x	+	y;

		}

}

public	class	Main	{

		public	static	void	main(String[]	args)	{

				System.out.println((new	C()).run(42));

		}

}

MiniJava Design — Scopes

38

UW CSE401/501m-25sp

public	class	C	{

		int	x;

		public	int	run(int	x)	{

				return	x(x)	+	y(x);

		}

		public	int	x(int	y)	{

				x	=	y;

				return	0;

		}

		public	int	y(int	y)	{

				return	x	+	y;

		}

}

public	class	Main	{

		public	static	void	main(String[]	args)	{

				System.out.println((new	C()).run(42));

		}

}

MiniJava Design — Scopes

39

Global 
Scope

Class 
Scope

Method
Scope

UW CSE401/501m-25sp

public	class	C	{

		int	x;

		public	int	run(int	x)	{

				return	x(x)	+	y(x);

		}

		public	int	x(int	y)	{

				x	=	y;

				return	0;

		}

		public	int	y(int	y)	{

				return	x	+	y;

		}

}

public	class	Main	{

		public	static	void	main(String[]	args)	{

				System.out.println((new	C()).run(42));

		}

}

MiniJava Design — Namespaces

40

Global 
Scope

Class 
Scope

Method
Scope

 Class 
 Namespace

 Variable 
 Namespace

 Field 
 Namespace
 Method 
 Namespace

UW CSE401/501m-25sp

Method Info
…
…

MiniJava Design

Symbol Table Hierarchy

41

Class Name Info
…
…

(global scope)
(class scope)

Method Info
…
…

Field Info
…
…

Variable Info
…
…

Variable Info
…
…

(method scope)

Variable Type,
Data, etc.

Disclaimer

This diagram is for
pedagogical purposes.
Your actual
implementation may
be very different.

UW CSE401/501m-25sp

• Suppose we look up variable 
x during a checking pass and 
find it is an object of type C 
(where C is a class)

• When we get to a later pass in the compiler, should we
look up the type of x again?

• Unless we have somewhere to store the type of x we will
have to look up the type repeatedly, which is error-prone

✦ Design AST nodes to remember types, and possibly

other references to symbol tables (& vice versa?)

✦ see AST lecture for more — just mutate field for project

MiniJava Design

Adding Fields to AST Nodes

42

public	class	Foo	{

		public	void	run()	{

				C	x	=	…;	…

		}

}

public	class	C	{…}

UW CSE401/501m-25sp

• Consider the class definition 
public	class	X	{	X	child;	…	}

✦ The class table for X has a field child, which has an
object type X, which has a class table, which …

• How do we handle recursive definitions using structurally
recursive compiler passes over an AST?

✦ pass 1 — Create some objects / symbol tables, but

leave some details missing (e.g. create global, class,
and method symbol tables, but don’t fill out types)

✦ pass 2 — Fill in the rest of the details, using results of
pass 1 to “tie the knot” on any cycles (e.g. now fill out
types)

Recursion / Cyclic Symbol Tables

43

UW CSE401/501m-25sp

• There are 2 hard problems in Computer Science

✦ Naming things, Cache Invalidation, and off-by-one

errors

• In real Java, we can declare variables inside nested
scopes (if-then, while, etc.)

✦ This requires deeper hierarchies of symbol tables

reflecting the { block } structure of source code

• Java encapsulation features (static, private, public,
protected, import, etc.) require more complex rules/
handling of name lookups

Names, Beyond MiniJava

44

UW CSE401/501m-25sp

• When managing any kind 
of nested scope, where 
you want to redirect 
unsuccessful lookups to 
an outer scope, it’s a 
good idea to maintain an 
explicit redirection 
pointer

• If your scopes may become deeply nested, then you
probably want to eventually optimize this redirection
mechanism to ensure O(1) amortized lookup cost (see a
compiler textbook for ideas)

Engineering advice

45

Method Info
…
…

Field Info
…
…

Variable Info
…
…

UW CSE401/501m-25sp

• What do we do if a name lookup fails, and all redirected
lookups fail? Report an error!

✦ Our Goal — say “x undefined” only once! (why?)

• We can do this using undefined objects/types

✦ When a lookup fails, report an error and add an

undefined object or type as the “information” in that
symbol table

✦ How does this help?

Error Reporting Advice

46

UW CSE401/501m-25sp

• In full Java, some ideas are pre-defined / “built in” to the
language. e.g. Object is a special class.

✦ Object is not part of the Java grammar (not a keyword)

e.g. int	Object	=	32;	foo(Object); is legal Java

✦ Object cannot be defined in a standard library file

why not?

• Solution — pre-populate the global symbol table with a
“built-in” class named Object.

✦ Minimizes special case logic in the compiler (recall the

Expression Problem), but we can still special case as
needed — e.g. every class is a subclass of Object

Predefined Global Entries

47

UW CSE401/501m-25sp

What makes a program “legal”?

The Checking Pass(es)

Symbol Tables & Names

Types
Relationships Between Types

Wrapup

Overview

48

UW CSE401/501m-25sp

• What is the meaning of x + y?

✦ If x and y are integers, then x + y is their sum

✦ If x and y are strings, then x + y is the concatenation

• “At the end of the day everything is just bits”

✦ Does x + y mean add bits as 2s-complement integers?

✦ Does x + y mean add bits as IEEE 754 doubles?

✦ The two additions are different assembly instructions

and very different circuits on your processor!

• meaning — basic data types are necessary to say what

the meaning of the bits you are computing on is!

Why Types? (Naively)

49

UW CSE401/501m-25sp

• Safety — types allow for error detection

• Expressiveness — overloaded methods and operators
can make code nicer to write

✦ e.g. x	+	y vs. add_int(x,y)

• Optimization — more information for the compiler

✦ Allows the compiler to make useful assumptions about

the program

✦ e.g. qualifiers like const, final, restrict (in C)

✦ note — qualifiers don’t change the meaning of the data;

they only change what is permissible to do with it

Why Types?

50

UW CSE401/501m-25sp

• Static vs. Dynamic Typing

✦ static — means checks done at compile time

✦ dynamic — means checks done at runtime

• Strong vs. Weak Typing

✦ strong — exceptional / error behavior of the language

is well specified

✦ weak — meaning of the language is poorly specified

• Weak typing is a huge problem for legacy code bases
(e.g. C/C++) — a major source of security vulnerabilities

• Weakly typed languages arose from a desire for
performance at the “expense of safety”

Strong vs. Weak vs.

Static vs. Dynamic

51

Recommendation:
Not a well-defined
or useful
distinction; avoid

UW CSE401/501m-25sp

Correcting Our Earlier Picture

52

“Weak
Typing”

Static
Typing

Dynamic
Typing

UW CSE401/501m-25sp

• base / primitive types

✦ e.g. int, double, char, boolean

✦ introduction of many new floating point types has made

this very complicated!

• constructed / compound types

✦ built from other types, recursively (like grammars!)

✦ This allows for user-defined types

✦ e.g. records / structs / classes

✦ e.g. arrays, pointers, function types, etc.

Base vs. Constructed Types

53

UW CSE401/501m-25sp

• 100s-1000s of research papers on types all use a BNF
variant to specify what types can be formed

✦ This is the same idea of an “abstract grammar” we saw

when discussing ASTs

• e.g. 
 
 
 
 

• Thus, we can use the same ideas (a class hierarchy) we
learned for representing ASTs earlier

Encoding Types (in a Compiler)

54

<latexit sha1_base64="QAO/EEOTKqnlSR+MBdC94ERWViA=">AAAEqnicpVJdb9MwFL0ZAUb5WAePvERUTNlUVe2EYBpC2kCgPZap3YaabcqH20Zz7M5xYVXVH4rEj+HYSUdZQUPCUezrc8+599q+0YinuW42vzsrd9y79+6vPqg8fPT4yVp1/elRLscqZt1YcqlOojBnPBWsq1PN2clIsTCLODuOLj4Y//FXpvJUio6ejNhpFg5E2k/jUAM6r/4woLexu/vOCzS70lpPU6FnXpClyTUSSclZKOboMJE694KgshG8xQfMrJVDFkuV+B4TWk3OtrzNJUZbK9+zCTeLUPtKhRPfICXwaSxivy9VFvKzrbpXeoKKjVmU6YswYwuugv1H33m11mw07fCWjVZp1Kgcbbnu9CighCTFNKaMGAnSsDmFlOPrUYuaNAJ2SlNgClZq/YxmVIF2DBYDIwR6gXmAXa9EBfYmZm7VMbJw/ApKj16WnAR236LFavJ7C9y/5Zja2KbGCdaojJkB1TQEeptuzvxXXY86tE37VAe/g1sxJ5rXa04a33IfGuwdq0rBHllkUSew+2bPndlqBG4mQKwhFIFl5tAoWPNaDW5iXGGe2gjmvoyXX1cW3KhRIqrJP4CiOM/MZmH2RWNbZfkG7gF8s/841a837mPl2GvENvMETAbL1KLKvBxogZgcCmvRaaYXhrbzQstjsPBK6PTWzb5eNo62G63XjdbnV7W9j2XPr9JzekE+XvAN7dEBtalLsfPeGTqXjnLr7qH7xe0V1BWn1Dyj34ab/AQ3OQnn</latexit>

type ::= int | boolean | . . .
| Record(entry⇤)

| Ptr(type) | Array(type) | Func(formal⇤, type)

entry ::= (name, type)

formal ::= (name, type)

UW CSE401/501m-25sp

• (MiniJava) The MiniJava AST Nodes include types, in
order to represent the output of the parser (as an AST)

✦ You MUST define a separate hierarchy of type objects

(called ADT = Abstract Data Type in previous quarters)

• Reason 1 — “terms” depend on “types” not vice-versa

✦ Most languages allow statements and expressions to

include/refer to types — e.g. int	x	=	0;

✦ Most languages do not allow types to include/refer to

expressions or statements — e.g. Array<x	+	y>

• Reason 2 — we will want to define helper methods on
types (e.g. are two types equal? assignable? etc.)

AST Nodes vs. Types

55

UW CSE401/501m-25sp

• Implementation — use singleton classes, create a
canonical object for each base type.

• Special cases you might want

✦ void — defining a void type allows one to say that all

methods/functions have a return type (potentially void)

✦ error/unknown — the same idea as unknown objects

for symbol tables; track where an error has already
been reported

✦ How is error/unknown different from void?

Base Types

56

<latexit sha1_base64="iEBtel0l0Rbbk2UPizD9pA5nZJU=">AAAEsHicpVJdb9MwFL0ZAUb5WAePvERUnbJpmtoKARpC2oSEyltB7Vap2SondduwxK4cl7Wq+kN55Zdw7KSjbENDwlHs63PPPffavuEkiTNdq/1wNu659x883HxUevzk6bOt8vbzk0xOVcQ7kUyk6oYs40kseEfHOuHdieIsDRN+Gl58NP7T71xlsRRtPZ/ws5SNRDyMI6YB9cs/DejtHB5+8ALNZ1rrRSz00gvSeHCFhFImnIkVOh5InXlBUKruBO/xATRrqfqVR1INfI8Lrebne97uLZyWVr5nk+7mcsdKsblvkAL4NBWRP5QqZcn53r5XeKBkZfNafcFSvu7L+bc6++VK7aBmh3fTqBdGhYrRkttOjwIakKSIppQSJ0EadkKMMnw9qlONJsDOaAFMwYqtn9OSSoidgsXBYEAvMI+w6xWowN5oZjY6QpYEv0KkR9WCM4A9tGi+mvzeGvdvORZW29Q4xxoWmilQTWOgd8WtmP8a16M2NeiY9sFv41bMiVb1mpNGd9yHBvudjYrBnlhkPU5gd2nPndpqBG4mgNYYEYFlZohRsFa1GtxozDAvrIK5L+NNrioLrtUooWryjxCRn2dps3D7opGtsngDtwnf8j9O9fuNh1gT7DW0zTwHk8MytagibwI0R0wOhTXvNNMLY9t5zPI4LLwSOr1+va9vGieNg/qbg/qX15Wjz0XPb9JLekU+XvAtHVGTWtShyGk6wrl0Zm7D7bp9l+XUDaeIeUF/DPfbL2upCwU=</latexit>

type ::= int | boolean | . . .

UW CSE401/501m-25sp

• a struct or record type is built from a list of constituent
types with names/labels for each entry. (e.g. C structs)

✦ values are built from values for each entry sub-type

• e.g. {a=3, b=2.4, c=true} is a value 
of type Record((a, int), (b, double), (c, boolean))

• Structs/Records are like classes, but without any
functions or inheritance

✦ In Java, we just use classes instead

Struct / Record Types

57

<latexit sha1_base64="WIljQ50BmMZvXSB7/W3GY+lRpCU=">AAAEx3icpVJNbxMxEJ0tC5TwlcKRy4oo1VJVVVIhQEVIrZBQewsoaStl22izcZJVvXbkdUqiKAcOXOH38VO48ex1IDSgIuHV2uM3782M7emOeJrrWu2bt3bDv3nr9vqd0t179x88LG88Os7lWCWslUgu1Wk3zhlPBWvpVHN2OlIszrqcnXQv3hr/ySVTeSpFU09H7CyLByLtp0msAXXK3w0YbO7tvQmiYU/qPIiytBdUI80mWutZKvS8gBZIV0rOYrFAnSgqVTej1/gAmrX0gSVS9cKACa2m51vBs2X+Kr3a0CoMbDGOeaBUPA0N4oB3Y5GEfamymJ9vbQfOE5VshuIIoYgztuSqFvQ/OjvlSm2nZkewatSdUSE3GnLDa1NEPZKU0JgyYiRIw+YUU46vTXWq0QjYGc2AKVip9TOaUwnaMVgMjBjoBeYBdm2HCuxNzNyqE2Th+BWUAVUdpwe7b9FiNfmDJe7fcsxsbFPjFGvXxcyAahoCvU63YP6rrk1N2qUD2ga/iVsxJ1rUa06aXHMfGuxXVpWCPbLIsk5g99GeO7PVCNxMhFhDKCLLzKFRsBa1GtzEmGCe2QjmvoyX/6wsulKjRFSTfwBFcZ65zcLsiya2SvcG/iF88/841a837mPl2GvENvMUTAbL1KJcXg60QEwOhbXoNNMLQ9t5seUxWHgldHr9al+vGse7O/UXO/X3zyv7R67n1+kJPaUQL/iS9umQGtSixOt4n70v3lf/yJf+pT8pqGue0zym34b/6Qe0ORRu</latexit>

type ::= . . . | Record(entry⇤) | . . .
entry ::= (name, type)

UW CSE401/501m-25sp

• The type of a function (aka. its signature) is specified by
giving an ordered list of its arguments (with their types)
and a return type

• In (Mini)Java, we might simply use the associated method
object, including its symbol tables and any other relevant
data.

Method / Function Types

58

<latexit sha1_base64="whFak+yt8iPdKeZzD9q3lIebya0=">AAAE/HicpVJNb9NAEB0XAyV8tIEjF4solalClFQIUBFSKyRUbgE1baW4rWxnk1i1d6P1BhpFya/gJ3BDXDlwhT/Bv+Ht2i5JKlQk1vLu7Jv3ZmZ3JxjGUaoajV/WyjX7+o2bq7dKt+/cvbe2Xr5/kIqRDFk7FLGQR4GfsjjirK0iFbOjoWR+EsTsMDh7rf2HH5hMI8H31XjIjhO/z6NeFPoK0GnZeqJRZ2N7+5XjDbpCpY6XRF2n6il2rpSaRFxNM6hAAiFi5vMCzUVeqbrhvcQHUK+l6nsWCtl1HcaVHJ9sOo/nBeC/GfHQ7QmZ+PHJ5syX/bTmzBxdzkwyNZJ8WbCcoKWka/hF6F0p/bGrkRxYSFFzcg8imZqyU7vcT9icL6Mv+GYX3tP1SqPeMMO5bDRzo0L5aImy1SGPuiQopBElxIiTgh2TTym+DjWpQUNgxzQBJmFFxs9oSiVoR2AxMHygZ5j72HVylGOvY6ZGHSJLjF9C6VA153Rh9wyarTq/M8f9W46Jia1rHGMN8pgJUEUDoFfpCua/6jq0T1u0SzXw93Er+kRFvfqk4RX3ocB+YVQR2EODzOs4dh/NuRNTDcfNeIg1gMIzzBQaCauoVeM6xjnmiYmg70t744vKvKUaBaLq/H0osvNMTRZmXjQ0VeZvYO/BN/2PU/154x7WGHuF2Hoeg8lg6VpknjcGmiE6h8SadZruhYHpPN/wGCy8Ejq9udzXl42DrXrzWb357mll523e86v0kB6Rixd8Tju0Ry1qU2h9sr5bP6yf9sz+bH+xv2bUFSvXPKCFYX/7DSPJKDU=</latexit>

type ::= . . . | Func(formal⇤ args, type return) | . . .
formal ::= (name, type)

UW CSE401/501m-25sp

• A class type is very similar to a struct type, except it also
includes a list of function signatures and optionally a
super-class.

✦ In Java, there is always a superclass (except Object)

• For MiniJava, it is much easier to use a very simple
ClassType with a single field, pointing to the symbol
table/object representing the class in question.

✦ Note — this is where the types can become recursive

(see last lecture for how to handle)

Class Types

59

<latexit sha1_base64="iEOzC7BinkHwH19DXfl6jRRHZzk=">AAAFHXicpVJdaxNBFL1bV63xo40++rIYUlapISmiUhFbClJfJErSFrK17G4mydLZD2Yn2hDSv+Kv8Cf4Jr6K+Kr/wzOzk5qkSAVn2Zk7555z752ZG2Q8ymW9/t1aumRfvnJ1+Vrp+o2bt1ZWy7f38nQoQtYOU56Kg8DPGY8S1paR5OwgE8yPA872g+Md5d9/z0QepUlLjjJ2GPv9JOpFoS8BHZWt1wp11jY3nzveoJvK3PHiqOtUPclOpJTjKJGTApoiQZpy5idT1Ii8UnXNe4YPoFpL1bcsTEXXdVgixejdA+f+rAD8He7nuWu8685pkSCS494wCR+qsibzeMhzA79w8mHGxGLExQqaUriOPp9hbgvhj1yFGOAlUrm9VMQ+V7mMxyvpqopbcRM/ZjOuakGfc56euY9WK/VaXQ/nvNEwRoXMaKZlq0MedSmlkIYUE6OEJGxOPuX4OtSgOmXADmkMTMCKtJ/RhErQDsFiYPhAjzH3sesYNMFexcy1OkQWjl9A6VDVcLqwexotVpXfmeH+LcdYx1Y1jrAGJmYMVNIA6EW6KfNfdR1q0QZt0zr4LdyKOtG0XnXS8IL7kGA/1aoI7Ewjs7oEuw/63LGuJsHNeIg1gMLTzBwaAWtaq8JVjBPMYx1B3Zfy8rPKvIUaU0RV+ftQFOeZ6CxMv2ioqzRvYO/CN/mPU/154x5Wjr1EbDWPwGSwVC3C5OVAC0TlEFiLTlO9MNCd52seg4VXQqc3Fvv6vLG3UWs8rjXePKpsvTI9v0x36R65eMEntEW71KQ2hdYn64f10/plf7Q/21/srwV1yTKaOzQ37G+/AX4GNaU=</latexit>

type ::= . . . | Class(entry⇤, func-type⇤, cls-type?super) | . . .
entry ::= (name, type)

UW CSE401/501m-25sp

• Array types specify that there is an array of objects/values
of the specified type

• Sometimes, a constant size for the array is known;
usually not. In MiniJava, we don’t know array length.

• What is Array(Array(int)) ?

• Some other languages support explicit multi-dimensional
arrays; common in numeric computing (e.g. Fortran,
Matlab, Numpy in Python, etc.)

Array Types

60

<latexit sha1_base64="DEOuIrZbHJL/HbklAx+jAbDBt80=">AAAFN3icpVLLbtNAFL0uBkp4NbBkYxGlMqhESYUAFSFaVUJlF1D6kOJS2c4ksTr2ROMJNIrS/+IrWLNih9iyYAucGU9K0ggVCVv23Dn3nHvPPKIBT3JVr392li65l69cXb5Wun7j5q3bK+U7e7kYypjtxoILeRCFOeNJxnZVojg7GEgWphFn+9Hxts7vv2cyT0TWUqMBO0zDXpZ0kzhUgI7KTl+j3urGxgsv6HeEyr0gTTpeNVDsRCk1TjI1KaApEgnBWZhNUSsKStXV4DlegHosVd+yWMiO77FMydG7h96DWYHmb/Mwz32bXvNOiw6JGneHWfxI+5rM4zHPLfzSy4cDJhdKzlvYkjIc+VoxRyxVm0r6nlm4TSwwX8GC3xUyDbn2YDPoYOwW++VnYcpmcwV/Lnl6lj5aqdRrdfN4i0HDBhWyT1OUnTYF1CFBMQ0pJUYZKcScQsrxtqlBdRoAO6QxMIkoMXlGEypBOwSLgRECPca/h1nbohnmumZu1DG6cHwSSo+qltNB3DVoMer+3gz3bz3Gprb2OMIY2ZopUEV9oBfppsx/1bWpReu0RWvgt7ArekVTv3ql8QX7ocB+ZlQJ2AODzOoyzD6YdafGTYadCVCrD0VgmDk0EtHUq8Z1jRP8x6aC3i+d5WfOgnMeBarq/j0oivVMTBdmTjQ2Lu0ZuDvITf5jVX/OuIuRY65QW/9HYDJE2ou0fTnQAtE9JMbipum70Dc3LzQ8hginhJveOH+vF4O99VrjSa3x5nFl87W988t0j+6TjxN8Spu0Q03apdj55Pxwfjq/3I/uF/er+62gLjlWc5fmHvf7b3dnP2M=</latexit>

type ::= . . . | Array(type) | . . .

UW CSE401/501m-25sp

What makes a program “legal”?

The Checking Pass(es)

Symbol Tables & Names

Types

Relationships Between Types
Wrapup

Overview

61

UW CSE401/501m-25sp

• Equivalence — two types are “the same”

• Subtyping

✦ Liskov Substitution Principle — if can always

substitute for , then is a subtype of

• Language specs can be more of a mess

✦ “is the same as”

✦ “is assignable to”

✦ “is a subclass or equal to”

✦ “is convertible to”

A
B A B

How are Types Related?

62

UW CSE401/501m-25sp

• Base types are equal if they’re the same (e.g. int = int)
and not equal otherwise

✦ (if representing with singletons, comparison is trivial)

• Constructed Types

✦ Nominal Equivalence — two types are the same only if

they have literally the same name (requires the type
constructor to supply a name, as in class C)

✦ Structural Equivalence — two types are the same if
they are the same constructor and all of their
component/constituent types (recursively) are the same

Type Equivalence

63

UW CSE401/501m-25sp

• Type constructors that use nominal equivalence

✦ Classes

• Type constructors that use structural equivalence

✦ Records/Structs (sometimes)

✦ Pointers

✦ Arrays

✦ Functions

• In OO languages, nominal equivalence of classes solves a
nasty problem with recursive types (no time to cover)

Nominal vs. Structural Equivalence

64

UW CSE401/501m-25sp

• Nominal — (assume classes)

✦ ? — If both and are class types, for the

same class (i.e. has the same name) then they are
equal. Otherwise they are not.

• Structural
✦ ? — If both and are the same type

constructor and all constituent types are also equal,
then they are equal. Otherwise they are not.

✦ We can compare recursively, but then comparison is
not guaranteed to be O(1) …

T1 = T2 T1 T2

T1 = T2 T1 T2

Implementation of Type Equality

65

UW CSE401/501m-25sp

• Instead of comparing recursively, we can make sure every
type has a unique representation — then equality
comparison becomes trivial

• Idea — instead of simply constructing types (from other
types) store a table of already constructed types; if you
can find an already constructed, structurally equivalent
object, then return that existing object instead of creating
a new one. (similar to how we use symbol tables)

• known as hash-cons or memoization

✦ This is a very powerful and broadly applicable trick in

compiler construction

Efficient Structural Comparisons

66

UW CSE401/501m-25sp

• Consider this code

class	C	{…}

class	D	extends	C	{…}

…	{	…	C	x	=	new	D();	…	}	…

• What type does x have?

• What static type (aka compile time type) does x have?

• What dynamic type (aka runtime type) does x have?

• Does the checking pass of the compiler reason about
static or dynamic types?

Dynamic vs. Static Type of Objects

67

UW CSE401/501m-25sp

• Type Cast — an explicitly written conversion of data from
one type to another

• Type Coercion — an implicitly introduced conversion of
data from one type to another

• Different languages have different rules for allowable type
conversions, and whether a particular conversion can be
a coercion or must be an explicit cast

✦ MiniJava does not have type casts to simplify this all

for you — but you can still assign objects of type to
variables of (static) type , when is a sub-class of

A
B A B

Casting and Coercing Types

68

UW CSE401/501m-25sp

• If a language supports type coercions, it is the
responsibility of the type-checker to insert explicit
type casts into the AST wherever a coercion is required.

✦ Why should we design things this way?

• Type checking actually does discard something. It
discards type coercions, which are implicit and thus
don’t appear as nodes or fields in the IR.

✦ Thus, all passes after type checking have one less thing

they need to worry about!

✦ This is another important way the compiler pass

architecture works — can make assumptions!

Coercions and Typechecking

69

UW CSE401/501m-25sp

• Base Types (usually number types)

✦ What does it mean to convert between int and
unsigned	int? between int and double?

• Base type conversions may simply reinterpret bits

• Or they may imply actual computation (i.e. generate code)

Type Conversions (Primitives)

70

UW CSE401/501m-25sp

• In C, (int*)foo doesn’t check what type T* foo is

• In Java

✦ Casting to a super-type is allowed (and coercible)

✦ What about casting to a sub-type?

✦ down-casting introduces a runtime (dynamic) check

✦ however, down-casting to a class that isn’t a sub-type

causes a compile time (static) error!

• In C++

✦ Different keywords and features support all of the

above

Type Conversions (Refs/Pointers)

71

UW CSE401/501m-25sp

• Make sure all classes representing types in the compiler
support a basic set of comparison methods

✦ are the types equal?

✦ is assignable to ?

✦ …

• Why should we do this?

• “Single source of truth” — code that defines what
“assignable” means is grouped in one place, reducing the
opportunity for errors arising from inconsistency

• Put this in your new MiniJava type package

T1 T2

Useful Functions on Types

72

UW CSE401/501m-25sp

What makes a program “legal”?

The Checking Pass(es)

Symbol Tables & Names

Types

Relationships Between Types

Wrapup

Overview

73

UW CSE401/501m-25sp

• One likely minimal design teams will use

✦ pass 1 — do some of name resolution; at least classes

✦ pass 2 — do rest of name resolution and all of type

checking

Checker Pass(es) — Simple

74

+ Sym
Tables

& Types
Pass 2

+ 
Class

Symbol
Tables

Pass 1AST

UW CSE401/501m-25sp

• Pass 1 — First half of name resolution (at least classes)

• Pass 2 — Second half of name resolution

• Pass 3 — Typechecking

• Pass 4 — Memory Layout

• Important! DON’T DO MEMORY LAYOUT NOW wait
until the code-gen project to work on memory layout

Checker Pass(es) — Conceptual

75

+
Layout
Data

Type-
Check

+
Symbol
Tables

Name
ResolveAST Mem.

Layout

+ 
Types

UW CSE401/501m-25sp

• This overview of checking, name, and types should give
you a decent idea of what needs to be done in your
project for the checker part of the project.

✦ You’ll need/want to adapt the ideas and advice here to

fit what makes sense to you!

✦ Enjoy your freedom 🦅!

• You’ll find good ideas in your compiler book too

• These slides also cover more than is needed for our
specific project

Disclaimer(s)

76

UW CSE401/501m-25sp

• How should we start translating our code into x86?

• What does a typical compiler do with the backend?

✦ (Friday) What IRs (Intermediate Representations) do

compilers use in their back-ends?

✦ (last 3 weeks of quarter) How does the backend of the

compiler optimize code?

• What will our MiniJava compiler do?

✦ (next 2 weeks) Review of x86 assembly & direct

translation from the AST to x86 code

Next Time…

77

