Lecture H:

ASTs, Visitors, &
Structural Recursion

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

Administrivia

e HW2 (grammars and LR parsing) due Thursday night,
11:59 pm

 Next project part, parser + AST up soon; due a week from
Thursday

+ More details in sections this week, but please start
looking at the assignment as soon as | post it, and
tinkering then

+ Probably good to finish HW?2 first though

+ Then, get the CUP grammar working and cleaned up,
before you add actions (the Java code that builds the

AST; will cover today)

Outline

The Role of Abstract Syntax Trees
Implementing ASTs

Implementing Passes

The Visitor Pattern

Outline

The Role of Abstract Syntax Trees

UW CSE401/501m-25sp

Our Basic Compiler Front-End

fSource

Code

\(strings)

Scanner

Token
Stream

Parser

Syntax
Tree

 The software architecture of compilers

Checker

+ A sequence of Intermediate Representations

Types +\

Symbol

Tablesy

+ with Passes converting or lowering between IRs

e Why? — Separation of concerns

+ Abstraction — Each IR discards unnecessary details,
while introducing a little bit more structure

+ Each pass only worries about these differences

5

Abstraction in Compilers

KSOUFCG

Code

Qs.trings)

Scanner

e The Scanner

+ introduces — token structure on the sequence

Token
Stream

Parser

Syntax
Tree

+ discards — whitespace, comments

e The Parser

Checker

+ introduces — tree structure to program

UW CSE401/501m-25sp

Types +\

Symbol

Tablesy

+ discards —

(via AST) delimiters, “syntactic markers”

UW CSE401/501m-25sp

Abstract Syntax Trees (ASTs)
Types+\

Checker >Symbol

Tablev

both are Abstract Syntax Trees

* The grammar describes concrete syntax trees

Syntax

Parser
Tree

+ But we should abstract away useless details

e Abstract Syntax Trees (ASTs) are the primary IR used by
compiler front-ends

 The checker will both consume and produce ASTs

* “When you leave ASTs, you've left the front-end”

v

UW CSE401/501m-25sp

Parse Tree vs. AST (ex. 1)

Full Parse Tree Abstract Syntax (AST)
ﬁ]ram\ [Program}

[Statement List]

[Id("a")) [Int(‘l)) [Id(“b")) (Int(Q)J

UW CSE401/501m-25sp

Parse Tree vs. AST (ex. 2)

Full Parse Tree

expr

term term/ Etor
factor factor
int int int
2 + 3 * 4

Abstract Syntax (AST)

UW CSE401/501m-25sp

Anticipating Checking

* The checking step will filter out programs that are
grammatical but still invalid in some way

+ €.9. public class Foo {
public int bar(int y) { return x; }

¥

e But checking will also analyze the program, producing
useful information, e.g. types like “y is an integer”

e So, we will want to annotate or decorate our ASTs
+ Should we have different kinds of ASTs?

+ Should we support not-yet-complete ASTs?

10

Outline

Implementing ASTs

11

UW CSE401/501m-25sp

“Abstract” Grammars”®

 Backus-Naur Form (BNF) was invented to specify the
concrete syntax of programming languages

e However, many languages/compilers also use BNF to
specify the abstract syntax (e.g. CPython, Haskell,
WebAssembly)

+ BNF specification of abstract syntax is extremely
common in research papers or for whiteboard/napkin
design of new languages

* Ambiguity, LR, LL, etc. are all not important for “abstract
grammars.” The purpose is a shorthand for describing an
IR (i.e. data structures) not specifying concrete syntax!

*I don’t know of any standard name for
12 this practice, but it is very common

UW CSE401/501m-25sp

Example from First Lecture

Classes for Simplified Calculator “Abstract” BNF

abstract public class Expr {} FExpr ::= Num int
, | Add Expr Expr
public class Num extends Expr {

public int i;

public Num(int v) { 1 = v; }

}
public class Add extends Expr { “Abstract” BNF (w/names)
public Expr e@, el; Expr ::= Num(int 1)
public Add(Expr a@, Expr al) { | Add(FExpr €0, Expr el)
ed = ao;
el = al;
}
}

*Note: this slide is meant to help you understand
13 the ideas; you will not be tested on it

UW CSE401/501m-25sp

Expanded Example

Classes for Simplified Calculator “Abstract” BNF

abstract public class Expr public class StmtlList PP y y
0 e G Expr = Num/(int i)
public class Num extends Expr { public StmtList(List<Stmt> xs)
public int i; { stmts = xs; } .
public Num(int v) { i = v; } } VCL?“(St’I“Zﬂg S)
}

public class IfStmt extends Stmt {

public class Var extends Expr { public Expr cond; Add(Empr 607 E:Cp’r 61)

public String s; public StmtList tbody, fbody;
public Var(String v) { s = v; }

) public Ifstmt(Bxpr ¢ Mul(Expr €0, Expr el)

public class Add extends Expr { StmtList f) {
public Expr e@, el; cond = c;
tcase = t;
public Add(Expr a@, Expr al) { fcase = f;
e0 = ao; } .
, Lo) StmtList ::= Stmt*
} public class WhileStmt extends Stmt {
public Expr cond;
public class Mul extends Expr { public StmtList body;
public Expr e@, el;
public WhileStmt(Expr c, . .
public MuL(Expr 20, Expr 1) { StmtList b) { Stmt ::= Assign(String nm, Expr rhs)
e0 = ao; cond = c;
el = al; body = b;

o . | If(Expr cond, StmtList tbody,
abstract public class Stmt {} Stth/LSt bedy)
public class Assign extends Stmt {
W hile(Expr cond,
public Assign(String nm, Expr r) {

public String lname;
e StmtList body)

public Expr rhs;

¥
}

*Note: this slide is meant to help you understand
14 the ideas; you will not be tested on it

UW CSE401/501m-25sp

Translating to Classes (1)

e For each “abstract” non-terminal, create a base class
e.g.
abstract public class Expr {}

 For each "abstract” production, create a sub-class
e.g.
public class Add extends Expr { .. }

15

UW CSE401/501m-25sp

Translating to Classes (2)

 Simple Refinements on naive strategy

+ Use native lists in the implementation language

public class StmtList {
public List<Stmt> stmts; ..

+ Derive all nodes from a common ancestor, which keeps
track of universal data (e.g. location in original source)

abstract public class ASTNode {}
public class Expr extends ASTNode { .. }

* No need to follow this idea exactly. However, systems
(including compilers) are easier to build and maintain if
they consistently follow simple, boring rules

16

UW CSE401/501m-25sp

Decorating ASTs (1)

e Approach 1 — Add fields to AST Nodes (Mega IRs)

*

*

e.g. change Var(String s) to Var(String s, Type t)

Pros — Conceptually Simple; smallest change to code;
efficient

Con — Exposed to all passes using this AST IR;

Big Con — Mutating IRs makes code harder to reason
about; e.g. which fields are defined or used at different
points in the compiler?

primary approach suggested for your project

17

UW CSE401/501m-25sp

Decorating ASTs (2)

* Approach 2 — Create a New IR with extra fields
+ Same as approach 1, but a separate IR

+ Pros — IR is immutable after being constructed; allows
us to discard fields not used in later passes

+ Cons — Usually leads to highly duplicative data
structure definitions (opportunity for bugs); can lead to
compiler inefficiencies (lots of small memory
allocations)

+ Used when implementing compilers with functional
languages; also common in teaching & research;
production compilers written in imperative languages
avoid this approach

18

UW CSE401/501m-25sp

Decorating ASTs (3)

» Approach 3 — Create a map from nodes to data

*

*

e.g. define an auxiliary HashMap<Expr, Type> types;

Pros — Does not require redefining a new IR; leaves the
base AST immutable; still quite efficient

Cons — Requires managing and passing around
auxiliary mapping tables; less convenient if many
passes will use the data (e.g. types are broadly used)

This approach can be highly effective if the decorations
are transient — e.g. one pass computes decorations,
another pass consumes, and then they are discarded

19

UW CSE401/501m-25sp

Building ASTs

 Underlying idea — define a correspondence between the
concrete parse tree and the abstract syntax tree

+ More specifically, define how to construct the abstract
syntax tree using structural recursion on the parse tree

 Realization of idea — the parser implicitly traverses the
concrete syntax tree in a post-fix traversal

+ At each production A ::= X,---X , a parser action
takes intermediate values for X;--- X as input and
produces an intermediate value for A

+ for us, intermediate values are AST nodes

* More in section and in the Parser project

20

Example:

Parse Tree
expr
term tem7/ Etor
factor factor
int int int

UW CSE401/501m-25sp

Building AST

Grammar
expr .= expr + term
| expr — term
| term
term ::= term x factor
| term / factor
| factor
factor ::=int
| (expr)
int :==0]1]2]|3|4
| 516]7]8]9

21

Actions

{
{
{
{
{
{
{
{
{

return
return
return
return
return
return
return
return

return

new Add(lhs, rhs); }
new Sub(lhs, rhs); }
arg; }

new Mul(lhs, rhs); }
new Div(lhs, rhs); }
arg; }

arg; }

arg; }

new Int(9); }

Outline

Implementing Passes

22

UW CSE401/501m-25sp

Operations on ASTs

 Many different passes are defined on ASTs (and other
IRSs)

+ Print a readable dump of the tree data structure

+ Print a parseable (source-code) version of the tree; aka.
“pretty-printing” (the reverse of scanning & parsing)

+ Perform checking, annotate types, & report errors
+ (less common) optimize the AST code directly
+ Generate another IR from the AST

+ Generate assembly code from the AST directly

23

UW CSE401/501m-25sp

ODbj-Oriented Approach (1)

e “Good” object-oriented style says we should define an
interface for AST Nodes that requires each node to
Implement each pass

abstract public class ASTNode {

abstract
abstract
abstract
abstract
abstract
abstract

public
public
public
public
public
public

void dumpTree(..) { .. }

void prettyPrint(..) { .. }
ASTNode typeCheck(..) { .. }
ASTNode optimize(..) { .. }
SSAIR lowerToSSA(..) { .. }
Asm generateAssembly(..) {..}

24

UW CSE401/501m-25sp

ODbj-Oriented Approach (2)

* Then each kind of AST Node implements this interface.
The code for each (NodeClass, Pass) pair is located with
the NodeClass

public class WhileNode extends StmtNode {
public WhileNode(..) { .. }
public void dumpTree(..) { .. }
public void prettyPrint(..) { .. }
public ASTNode typeCheck(..) { .. }
public ASTNode optimize(..) { .. }
public SSAIR lowerToSSA(..) { .. }

{ ..

public Asm generateAssembly(..) }

25

UW CSE401/501m-25sp

The Whole System Viewpoint

WhileNode.java

public class J

public
public
public
public
public
public
public

Wh
VO]
VO]
AS]
AS]
SSA
Asi

IfNode.java

public class Whil
public WhileN
public void d
public void (
public ASTNod
public ASTNod
public SSAIR
public Asm g€

AddNode.java

public class WhileN

public
public
public
public
public
public
public

WhileNod
void dum
void pre
ASTNode
ASTNode
SSAIR 1o
Asm gene)

VarNode.java

public class WhileNode extends StmtNode {

public
public
public
public
public
public
public

WhileNode(..) { .. }

void dumpTree(..) { .. }

void prettyPrint(..) { .. }

ASTNode typeCheck(..) { .. }

ASTNode optimize(..) { .. }

SSAIR lowerToSSA(..) { .. }
{

Asm generateAssembly(..) { .. }

20

UW CSE401/501m-25sp

System Design Concepts

e Review of Terms

+ Locality (Lexical) — Which parts of the system are
close to each other in the source code?

+ Encapsulation — Which parts of the system are
allowed (via type system) to access which other parts?

+ Extensibility & Maintenance — What is required to add
X to the system or modify X?

27

UW CSE401/501m-25sp

Consequences of This Design

* The object-oriented design enforces lexical locality (i.e.
which class in which file) according to the AST Nodes, in
order to encapsulate private data fields

+ but we make data fields public on AST Nodes, so this
ISn’t necessary

* The object-oriented design makes it easy to extend the
system with new AST Nodes, or modify single existing
AST nodes, because of this lexical grouping.

* The object-oriented design makes it possible to factor
out common code by using deeper inheritance

hierarchies; e.g. ASTNode — Exp — BinaryOp — Add

28

UW CSE401/501m-25sp

The Expression Problem™

Functional Languages
(via Pattern-Matching)

© (0 o]
S | ™

) . @] -

all —+ I (@) = M
c ~+ o | ©) >
S < 1) ~+) Q
© oo | = | A
—l| S o I @])
| - [§ D H- |l LW]| D>
) -} g} N ni| wm
() ~+ |[§ &<~ | @ > | =
P /N P VS N\

via Inheritance Var
Add
Mul

BinOp

IfNode

Object-Oriented
Languages

29 * Originally formulated by Philip Wadler in 1998

UW CSE401/501m-25sp

Expression Problem: Tradeoffs

e |f code is grouped lexically by data, then it is easier to
add, modify, and share across different Classes in the IR

+ This is the right choice if the set of operations changes
less frequently in your system

* |f code is grouped lexically by function, then it is easier
to add, modify, and share across different Passes

+ This is the right choice if the set of AST/IR Classes
changes less frequently in your system

* Key conclusion — The second option is usually the right
choice for compilers. Why? ...

30

Many Passes

UW CSE401/501m-25sp

Compilers have a lot of different passes on IRs, and the
abstract syntax for a given language doesn’t change often

targetlibinfo
tti
no-aa
tbaa
scoped-noalias
assumption-
cache-tracker
basicaa
ipsccp
globalopt
deadargelim
domtree
instcombine
simplifycfg
basiccg
prune-eh
inline-cost
inline
functionattrs
domtree
sroa
early-cse
lazy-value-info

HSiimn_-thraadinc

tailcallelim
simplifycfg
reassociate
domtree

loops
loop-simplify
lcssa
loop-rotate
licm
loop-unswitch
instcombine
scalar-evolution
loop-simplify
lcssa

indvars
loop-idiom
loop-deletion
loop-unroll
mldst-motion
domtree
memdep

gvn

memdep

mamrnunnt

jump-threading
correlated-
propagation
domtree
memdep

dse

loops
loop-simplify
lcssa

licm

adce
simplifycfg
domtree
instcombine
barrier
float2int
domtree

loops
loop-simplify
lcssa
loop-rotate
branch-prob
block-freq 31

cralar_avnliitinn

simplifycfg
domtree
instcombine
loops
loop-simplity
lcssa
scalar-evolution
loop-unroll
instcombine
loop-simplify
lcssa
licm
scalar-evolution
alignment-from-
assumptions
strip-dead-
prototypes
elim-avail-
extern
globaldce
constmerge
verify

LLVM Optimization
Passes using -02
(first lecture)

UW CSE401/501m-25sp

The Expression Problem™

Functional Languages

How do we achieve this (via Pattern-Matching)

In an
Object-Oriented
Language?

9oddwnp
()3utudAiioud
()23ydadAy
()oztwrtydo
()¥SSolJamoT
()WSvo31edauad

Var
Add
Mul

IfNode

Object-Oriented
Languages

32 * Originally formulated by Philip Wadler in 1998

UW CSE401/501m-25sp

Simple Structural Recursion (1)

Q + | < o =)

public class .. { % % E Er g %

s |S|8|IN|O| &

public void foo(ASTNode n) { SEEEEE
if (n instanceof Var) {..} var
else if (n instanceof Add) {..} Add
else if (n instanceof Mul) {..} Mul

else if (n instanceof IfNode) {..}
else if (n instanceof Assign) {..}

IfNode

Assign

* Pro — Simple and Direct
e Con — “missing case” bugs

e Con — no support for “defaults” (needs all cases)

33

UW CSE401/501m-25sp

Simple Structural Recursion (2)

* Different traversals can be implemented via recursive
calls on sub-trees

public class .. {
public void foo(ASTNode n) {

else if (n instanceof Mul) {
// do something - pre-order
foo(n.ed);

foo(n.el);
// do something - post-order

¥

e A possible variation — instead of void, have the call
return something (e.g. a new, modified ASTNode)

34

UW CSE401/501m-25sp

Pass in a Class

* Where should the structurally
recursive function be located?

+ globally? (not in Java!)
+ on the AST Nodes? Which one?
* No! No! This will not do!
 Each operation / pass gets it’s own class
+ We create exactly one instance of such a “pass class”
+ Helper functions can be private to the class

+ Pass-local data can be defined as fields on the class —
will only exist while the pass is being executed

35

UW CSE401/501m-25sp

Pass-Local Data

e Suppose you’re trying to print out the AST, and you want to
control indentation

+ How are you supposed to know how many tabs deep you
are when traversing a given AST node?

e Approach 1 — change the function signature, e.qg.
public void print(ASTNode n, int numTabs) {..}
+ This is verbose; every recursive call must supply it

e Approach 2 — store as pass-local data, and mutate it

public class PrintPass {
private int numTabs;
public void print(ASTNode n) {..}

+ Much less verbose; but you need to manage it correctly

36

Outline

The Visitor Pattern

37

UW CSE401/501m-25sp

My Teacher Told Me..

public

e ...tonotuse instanceof in Java!

public

if (n
 In Java, you’re supposed to use clee 17 coot Mal) 1}
- - . else i eof IfNode) {..}
method dispatch and inheritance - of Assign) {.}
to let the language control which .

code gets run

e But if we do that, we get locality according to AST node,
instead of locality according to pass

* The visitor pattern is an enhanced version of pass-in-a-
class that’s designed to avoid instanceof

* The visitor pattern will also help us factor out code
that’s common to multiple passes using inheritance

38

UW CSE401/501m-25sp

Double Dispatch

 We need to dispatch on two different classes

+ Which AST Node, and which Pass”?

* |In “Simple Structural Recursion” the code is located in
the pass class, so there’s not a good way to use
overloading to dispatch on AST Nodes

* |n the visitor pattern, each function call turns into two
function calls

+ We ask an AST Node to accept a Pass (aka Visitor)

+ We ask that specific Pass to visit the AST Node

39

UW CSE401/501m-25sp

Double Dispatch Visually
Each Visitor defines
visit(Var v), visit(Add v), ... \

methods, one for each
AST Node Y ~| &
o|l&|<|o|2|d
(- ~+ | © © D)
= < D —+) Q
S| |Oo|lO| ||~
—) > =] o D
S| HE | Ol W] D>
()] 5 (@] N N 2
m || x| ® > | =
Each AST Node var| | @
defines a generic Addl | @
accept(Visitor v) Mull | @
method, which is IfNode| (@
only responsible for Assign| |@
calling the visitor O

40

UW CSE401/501m-25sp

An Idea Whose Time Never Came

e OO Languages implement dynamic single dispatch

+ i.e. when you call obj.method(argl, arg2), we decide
which implementation of method to call by dispatching
on the runtime (dynamic) type of obj

e Dynamic Double (or multiple) Dispatch

+ When you call obj.method(argl, arg2), we decide

which implementation of method to call by dispatching
on the runtime (dynamic) type of obj AND on the dyn.

type of argl (AND on the dyn. type of arg2 if multiple
dispatch)

e Topic of research at UW(!) in the 1990s

+ Was very complicated and, not that useful

UW CSE401/501m-25sp

Visitor Pattern — Calculator

interface Visitor { i ,) ..
public void visit(Num n); public class PrintPass implements Visitor {
J

public void visit(Add n); public void visit(Num n) {
} System.out.print(n.i);

}

abstract public class Expr { public void visit(Add n) {

abstract void accept(Visitor v); System.out.print("(");
} n.e@.accept(this);

System.out.print("+");
n.el.accept(this);

public class Num extends Expr { .. i
System.out.print(")");

public void accept(Visitor v) {
v.visit(this); t
} }

¥

public class Add extends Expr { .. Code for a SpeCIfIC Pass

public void accept(Visitor v) {
v.visit(this);
}
}

Generic Code for all Passes

42

UW CSE401/501m-25sp

Visitor Pattern — Calculator

interface Visitor {
public void visit(Num n);
public void visit(Add n);

¥

abstract public class Expr {
abstract void accept(Visitgr v);

¥

public class Num extends Expr¥{ ..
public void accept(Visitor v)}{
v.visit(this);
}

public class Add extends Expr

public class PrintPass implements Visitor {

public void visit(Num n)
System.out.print(n.i);

public void visit(Add n) {
System.out.print("(");
n.e@.accept(this);
System.out.print("+");
n.el.accept(this);
System.out.print(")");

Call node.accept(ppass)
(dispatch on Node)

2. Callv.visit(node)
(dispatch on Pass)

43

UW CSE401/501m-25sp

Visitor Pattern — Calculator

interface Visitor {
public void visit(Num n);
public void visit(Add n);

¥

abstract public class Expr {
abstract void accept(Visitor v);

¥

public class Num extends Expr { ..
public void accept(Visitor v) {
v.visit(this);
}
}

public class Add extends Expr { ..
public void accept(Visitor v) {
v.visit(this);
}
}

public class PrintPass implements Visitor {
public void visit(Num n) {
System.out.print(n.i);

}
public void v151t(Add n) {

Inside the visit method, we
make structurally recursive
calls by invoking

child.accept(visitor);

44

UW CSE401/501m-25sp

The Secret Trick of Visitors

e Why can’t we just call visitor.visit(node) directly?

+ Why does it help to call node.accept(visitor)
instead?

e Inthe visitor.visit(node) call, the dynamic dispatch
Is on the visitor. We have to statically dispatch on the
type of node.

+ So we need to be in a snippet of code where the exact
type of node is known. (This is why accept and the

whole visitor pattern is fundamentally needed)

45

UW CSE401/501m-25sp

Variations on Visitor Pattern

e Instead of having a return type of void, we could define a
visitor interface generically over return types RetT

interface Visitor<RetT> {
public RetT visit(Num n);

* We could hard code the structurally recursive calls into
the accept methods as a fixed traversal order

public class Add extends Expr { ..

public void accept(Visitor v) {
ed.accept(v);
el.accept(v);
v.visit(this);

b}

46

UW CSE401/501m-25sp

Factoring Out Code w/Visitors

e Some compiler passes only need to visit a few types of
AST Nodes

+ e.g. a pass to collect all variable names used in a
program only needs to visit nodes that store variable

Names

e |If we define a visitor superclass with a default traversal
order (e.g. post-order) then we only need to overload a
few visitors in a sub-class

e Large compiler projects using visitors will define a few
(6-10) types of basic visitors to take advantage of this

strategy

47

UW CSE401/501m-25sp

Why is this so complicated?

e (Gilbert’s opinion) Object-oriented languages got overly
focused on the “right way” to do things — requiring the
development of confusing “design patterns”

+ Many of these were compensating for missing
language features that are slowly and poorly being
incorporated (e.g. Java now has pattern matching)

e But a lot of what people call The Visitor Pattern is really
about various Pass-in-a-Class strategies

+ This is a fundamentally good idea in compiler design

+ In non object-oriented languages, similar modularity
mechanisms are used to encapsulate passes

48

UW CSE401/501m-25sp

References on Design Patterns

* Two classic books on design patterns

+ Design Patterns: Elements of Reusable Object-
Oriented Software. Gamma, Helm, Johnson, and
Viissides. Addison-Wesley, 1995. (the classic “Gang of
Four” book on design patterns; code in C++ &
Smalltalk)

+ Object-Oriented Design & Patterns. Horstmann. Wiley,
2nd edition, 2005. (code in Java)

e |f you want information specifically about the MiniJava
AST design, see the starter code and Appel’s textbook

49

