
UW CSE401/501m-25sp

Lecture G:

Intermediate
Representations
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

• Short, Mini, not that big a deal, but it’s still a homework
HW 3 is due Monday — 1 late day max!

• Midterm is next Friday

✦ topics & old exams available on the course website

✦ Closed Book! No notes except one 3x5 index card,

hand-written only. Index cards available today & next
week after class.

✦ MiniJava BNF will be provided

✦ Review for midterm during sections next week (May 8)

Administrivia

2

UW CSE401/501m-25sp

Compiler Architecture & IRs

Linear IRs — 3AC & Stack Machines

CFGs & Basic Blocks

Other IRs

Overview & Taxonomies

Outline

3

UW CSE401/501m-25sp

Compiler Architecture & IRs
Linear IRs — 3AC & Stack Machines

CFGs & Basic Blocks

Other IRs

Overview & Taxonomies

Outline

4

UW CSE401/501m-25sp

Our Compiler’s Structure

5

Front-End of the Compiler

Back-End of the Compiler

AST to “Instructions”?

Types +
Symbol
Tables

CheckerSyntax
TreeParserToken

StreamScanner
Source
Code

(strings)

ASM /
TargetPass nIR n…IR 2Pass 1IR 1

UW CSE401/501m-25sp

• Lowering Pass to Backend — transforms ASTs to the
middle/main IR for the compiler

• Middle IRs — Control Flow Graph + Basic Blocks

✦ Basic Blocks use three-address code or stack machine

code; usually in single static assignment form

• Optimization Passes — work on middle IRs

• Analysis IRs — Dependency Graphs, annotations, etc.

✦ derivative/temporary IRs for specific optimizations

• Target-specific Passes — passes that lower from the
target-independent middle IRs to a specific assembly code

Structure Inside the Backend

6

UW CSE401/501m-25sp

• No one IR is best for all purposes

✦ Every compiler defines IRs differently, and defines

many different IRs

• Considerations

✦ What structure has been discarded vs. introduced? 

i.e. is the IR closer to the front or back of the compiler?

✦ Does the IR have an efficient/compact encoding? 

(IR efficiency strongly affects compilation times)

✦ Is the IR easy to generate from the preceding pass?

✦ Is the IR easy to transform/manipulate?

✦ Is the IR easy to analyze?

IRs, IRs, and more IRs

7

UW CSE401/501m-25sp

The MiniJava
1-pass
Backend

Assembly (e.g. x86)

3-Address Codes

IR Scheme for this Lecture

8

Control Flow Graphs

ASTs + Symbol Tables

A traditional
compiler flow

UW CSE401/501m-25sp

Compiler Architecture & IRs

Linear IRs — 3AC & Stack Machines
CFGs & Basic Blocks

Other IRs

Overview & Taxonomies

Outline

9

UW CSE401/501m-25sp

• Code for an abstract machine, in the form of a sequence
of instructions (sequence = linear)

• Each instruction does exactly one thing

• Easy to build data structures — array or list of
instructions, each instruction of fixed size

• 2 examples — 3-address code & stack machine code

Linear IRs

10

t1	←	2

t2	←	b

t3	←	t1	*	t2

t4	←	a

t5	←	t4	-	t3

3-address code (3AC)

push	2

push	b

multiply

push	a

subtract

stack machine code

UW CSE401/501m-25sp

Suppose we read a 2d array* — A[i,	j+2]

Example — Array Dereference

11

AST

Subscript

A i +

2j

High-level 3AC

t1	←	j	+	2

t2	←	A[i,t1]

*A is a 10x20 array
of 32-bit ints

Low-level 3AC

r1	←	[fp-4]

r2	←	r1	+	2

r3	←	[fp-8]

r4	←	r3	*	20

r5	←	r4	+	r2

r6	←	4	*	r5

r7	←	fp-216

f1	←	[r7+r6]

Mid-level 3AC
t1	←	j	+	2

t2	←	i	*	20

t3	←	t1	+	t2

t4	←	4	*	t3

t5	←	addr	a

t6	←	t5	+	t4

t7	←	load	t6

UW CSE401/501m-25sp

• What does high-level vs. mid-level vs. low-level mean?

• Oh no, ambiguity!

✦ There’s no real definition of “high” vs. “low” level

• High-level — should be closer to the AST / source code

✦ Concise, but can’t optimize hidden details (e.g.

indexing arithmetic)

• Low-level — should be closer to the assembly code

✦ Verbose, lots to optimize, but many optimization

decisions have already been made

• Mid-level — strikes a balance that’s good for many
target-independent optimizations

Level of Abstraction

12

UW CSE401/501m-25sp

• general form of instruction — x	←	y	op	z

✦ one operator (op) and 3 names (x, y, z)

✦ degenerate forms x	←	y, x	←	op	y

• example — x	=	2	*	(m+n) gets converted into

t1	←	m	+	n;		t2	←	2	*	t1;		x	←	t2;

✦ you may prefer assembly-ish syntax — add	t1,	m,	n;

• 3AC (before register allocation) allows for an arbitrary
number of temporary names

• Storage — could have n-address codes, but 3AC has a
very regular layout in memory (1 op + 3 addresses)

Three Address Code (3AC or TAC)

13

UW CSE401/501m-25sp

• Abstract Machine Model

✦ “an infinite register file” — arbitrarily many names

✦ A main memory (loads & stores) or other sim. memory

• Advantages

✦ similar to most assembly languages / processor ISAs

✦ allows for naming intermediate values explicitly

• Examples

✦ ILOC (Cooper & Torczon), LLVM IR (mostly)

Three Address Code (3AC or TAC)

14

UW CSE401/501m-25sp

• example — x	=	2	*	(40	+	3)

• stack machine code

Stack Machine Code

15

pushaddr	x

pushconst	2

pushconst	40

pushconst	3

add

mult

store

@x
2
@x

2
40

@x
2
40
3

@x

2
43

@x
86
@x

Abstract Machine Model

UW CSE401/501m-25sp

• Originally used for stack-based computers (e.g. B5000,
circa 1961)

• Famously used for many virtual machines

✦ Pascal — pcode (1973)

✦ Forth (1970)

✦ Post-Script (1984)

✦ JVM (1996) and MSIL/CIL (2002, C#/VB bytecode)

• Stack machine code is viewed as highly portable partly
because it does not require decisions about register
allocation

Stack Machines — History & Practice

16

UW CSE401/501m-25sp

• Advantages

✦ Gets rid of names for intermediaries

✦ Very easy to generate correct machine code for

✦ More compact (per-instruction; not necessarily overall)

• Disadvantages

✦ Gets rid of names for intermediaries

✦ Difficult to optimize directly

✦ Does not match actual machine ISAs

• Our approach to MiniJava codegen will be secretly
based on a stack machine!

Stack Machine Code

17

UW CSE401/501m-25sp

• We will discuss more during lectures on dataflow analysis

• SSA is a variant of 3AC with certain additional constraints

✦ Every name should be assigned a value on a single

line, then not changed or mutated on any line after that.
i.e. the assignment to the variable should be static

• It is easier to reason about code when variables are not
reassigned / mutated (e.g. how variables work in math)

Single-Static Assignment (SSA)

18

x	←	2

y	←	b

x	←	x	*	y

y	←	a

x	←	y	-	x

t1	←	2

t2	←	b

t3	←	t1	*	t2

t4	←	a

t5	←	t4	-	t3

3AC 
w/mutation

Single
Static
Assignment

UW CSE401/501m-25sp

• Linear IR examples (3AC, Stack Machine Code) that
we’ve seen don’t include control flow such as if, or
jump, or call function

• We can include these, but then we probably also need to
include labels to jump to

• Should functions be reduced to labels and jumps? (much
lower-level) or should function arguments / return values
be kept? (higher-level)

Jumps & Calls?

19

UW CSE401/501m-25sp

Compiler Architecture & IRs

Linear IRs — 3AC & Stack Machines

CFGs & Basic Blocks
Other IRs

Overview & Taxonomies

Outline

20

UW CSE401/501m-25sp

• Basic Block — A maximal sequence of straight-line (i.e.
branch free) code [Cooper & Torczon Ch. 4]

✦ “thread of control” (program counter, etc.) can only

enter at the top and leave at the bottom — therefore
can be viewed as atomic w.r.t. control flow

• Question — Can a basic block call a function in the
middle of the block?

• LLVM IR says “sure” but Cooper & Torczon def. says “no”

• Contents of basic blocks are encoded in a linear IR (e.g.
3AC)

Basic Blocks

21

UW CSE401/501m-25sp

• CFG no longer means “Context-Free Grammar”

✦ Don’t you love TLAs?

• A graph, potentially cyclic

✦ nodes — basic blocks

✦ edges — possible path of control flow between basic

blocks (every execution of the program must be a path/
trajectory through the CFG)

Control Flow Graph (CFG)

22

UW CSE401/501m-25sp

print("hello");

a	=	7;

if	(x	==	y)	{

		print("same");

		b	=	9;

}	else	{

		b	=	10;

}

while(a	<	b)	{

		a++;

		print("bump");

}

print("finis");

“CFG” Example

23

print("hello");

a	=	7;

if	(x	==	y)

print("same");

b	=	9; b	=	10;

a++;

print("bump");

while	(a	<	b)

print("finis");

UW CSE401/501m-25sp

• Why not just have a big long linear IR version of a
program with branches? Why should we build a CFG?

• the linear order in which basic blocks get sequenced is
(mostly) arbitrary (some optimization differences at
lowest-level)

• can think separately about optimizing basic blocks vs.
bigger picture

• helps with analyzing the code, e.g.

✦ “Does the program always have to execute block 3

before block 7?”

✦ “Is it possible to reach all basic blocks?”

Why Should We Use CFGs?

24

UW CSE401/501m-25sp

• Suppose we directly generate 3AC from the AST

• What are the basic blocks?

✦ recall — entrance and exit at only one place!

✦ No jumps in or out of the middle

✦ “I’ve started, so I’ll finish”

Constructing CFG from 3AC (1)

25

1			i	=	1

		L2:

2			j	=	1

		L3:

3			t1	=	10	*	i

4			t2	=	t1	+	j

5			t3	=	8	*	t2

6			t4	=	t3	-	88

7			a[t4]	=	0

8			j	=	j	+	1

9			if	j	<=	10	goto	L3

10		i	=	i	+	1

11		if	i	<=	10	goto	L2

12		i	=	1

		L13:

13		t5	=	i	-	1

14		t6	=	88	*	t5

15		a[t6]	=	1

16		i	=	i	+	1

17		if	i	<=	10	goto	L13

UW CSE401/501m-25sp

• Can we just break the code at each label?

• What are all possible jumps?

• hmmm…

Constructing CFG from 3AC (2)

26

1			i	=	1

		L2:

2			j	=	1

		L3:

3			t1	=	10	*	i

4			t2	=	t1	+	j

5			t3	=	8	*	t2

6			t4	=	t3	-	88

7			a[t4]	=	0

8			j	=	j	+	1

9			if	j	<=	10	goto	L3

10		i	=	i	+	1

11		if	i	<=	10	goto	L2

12		i	=	1

		L13:

13		t5	=	i	-	1

14		t6	=	88	*	t5

15		a[t6]	=	1

16		i	=	i	+	1

17		if	i	<=	10	goto	L13

UW CSE401/501m-25sp

• A leader is the first instruction in a basic block

✦ The very first instruction

✦ Any target of a branch/jump/goto

✦ Any instruction immediately after a branch/jump/goto

Algorithm: Find Leaders

27

1			i	=	1

		L2:

2			j	=	1

		L3:

3			t1	=	10	*	i

4			t2	=	t1	+	j

5			t3	=	8	*	t2

6			t4	=	t3	-	88

7			a[t4]	=	0

8			j	=	j	+	1

9			if	j	<=	10	goto	L3

10		i	=	i	+	1

11		if	i	<=	10	goto	L2

12		i	=	1

		L13:

13		t5	=	i	-	1

14		t6	=	88	*	t5

15		a[t6]	=	1

16		i	=	i	+	1

17		if	i	<=	10	goto	L13

UW CSE401/501m-25sp

CFG Result
from Example

28

1			i	=	1

ENTRY

B1

2			j	=	1

3			t1	=	10	*	i

4			t2	=	t1	+	j

5			t3	=	8	*	t2

6			t4	=	t3	-	88

7			a[t4]	=	0

8			j	=	j	+	1

9			if	j	<=	10	goto	L3

10		i	=	i	+	1

11		if	i	<=	10	goto	L2

12		i	=	1

13		t5	=	i	-	1

14		t6	=	88	*	t5

15		a[t6]	=	1

16		i	=	i	+	1

17		if	i	<=	10	goto	L13

Easier to see now
that there are 3 loops,
with 2 nested loops

Most of the execution time
will be spent in loop bodies,
so this suggests where
optimization is most valuable

UW CSE401/501m-25sp

1. Perform linear scan of instruction list to identify leaders

- leader at beginning of method

- leader at target of branch

- leader immediately following a branch or return

2. scan a second time, starting a new basic block with each

line that is a leader

Basic Block Finding Algorithm

29

UW CSE401/501m-25sp

Compiler Architecture & IRs

Linear IRs — 3AC & Stack Machines

CFGs & Basic Blocks

Other IRs
Overview & Taxonomies

Outline

30

UW CSE401/501m-25sp

• IRs we’ve seen up to now represent the code

✦ They are definitive (Cooper & Torczon) — that is, they

define the program being compiled

• During optimization we often want to analyze the code,
not just represent and manipulate it

✦ IRs that augment definitive IRs are derivative (Cooper

& Torczon) — that is, they are derived from some
definitive form of the program being compiled

✦ derivative IRs are constructed for some purpose and
then discarded once the definitive IR is changed

IRs for Analysis

31

UW CSE401/501m-25sp

• The most basic dependency question

✦ Given a sequence of instructions s1;	s2;	s3;	s4

✦ Is the sequence s1;	s3;	s2;	s4 equivalent? 

i.e. is it legal to reorder two instructions?

Dependency Graphs

32

t1	←	2

t2	←	b

t3	←	t1	*	t2

t4	←	a

t5	←	t4	-	t3

e.g. 3AC

t1	←	2 t2	←	b

t3	←	t1	*	t2 t4	←	a

t5	←	t4	-	t3

Dependency Graph (not CFG)

UW CSE401/501m-25sp

• These dependency graphs are used in an optimization
known as scheduling (covered near the end of this
course)

Dependency Graphs

33

t1	←	2

t2	←	b

t3	←	t1	*	t2

t4	←	a

t5	←	t4	-	t3

e.g. 3AC

t1	←	2 t2	←	b

t3	←	t1	*	t2 t4	←	a

t5	←	t4	-	t3

Dependency Graph (not CFG)

UW CSE401/501m-25sp

• Similar to dependency graphs, but only concerned with
the flow of data

• One version of dataflow graph is used for dataflow
analysis (will cover later in this course)

• Another version of dataflow graph is used for compilers
in machine learning, like PyTorch, TensorFlow, XLA, etc.

✦ In machine learning systems, the dataflow graph is

definitive, rather than derivative

Dataflow Graphs

34

UW CSE401/501m-25sp

Compiler Architecture & IRs

Linear IRs — 3AC & Stack Machines

CFGs & Basic Blocks

Other IRs

Overview & Taxonomies

Outline

35

UW CSE401/501m-25sp

• Tree vs. DAG vs. Graphical (cyclic) vs. Linear

✦ Data-structure (often) dictates code structure of passes

✦ e.g. tree = recursion; linear = loop; cyclic = fixed-point

• Are there names in the IR? How can names be used?

• Memory Models

✦ what kinds of memory does the IR have instructions/

nodes to manipulate?

• Definitive (“source of truth”) vs. Derivative (“supplement”)

• Level of Abstraction (low, medium, high)

Taxonomy for IRs

36

UW CSE401/501m-25sp

• There is no single, correct IR to use

• In the front-end, probably AST or variant thereof

• Much of the back-end (some variant of CFG + 3AC)

• Depending on what we want to do, we may convert or
augment the IR to make some change and then change
back

• Level of Abstraction

✦ Which details does a choice of IR allow you to

access?

✦ Which details does a choice of IR impose on you?

Which is the Right IR to Use?

37

UW CSE401/501m-25sp

• x86-64 review next week, then Midterm on Friday

• Week after — Code shape (how to lower from AST to a
linear IR)

✦ we’ll go straight to x86-64 for the project!

• Last 3 weeks

✦ Dataflow Analysis

✦ Optimization in general

✦ 3 Key Optimizations — Instruction Selection,

Instruction Scheduling, and Register Allocation

Next Week & On!

38

