Lecture F:

LL & Recursive
Descent Parsing

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

Administrivia

e HW2 due tomorrow night
 Parser/AST Project
+ due next Thursday
+ Important to show up to section tomorrow!

* Mini HW 3 out tomorrow or Friday (only one late day
allowed)

* More on LL grammars and HW3 next week’s section

Outline

Top-down Parsing

LL(k) Grammars

Recursive Descent

Hacking Grammars to Work Top-Down
Left Recursion
Common Prefixes

What Do Real Compilers/Interpreters Do?

Outline

Top-down Parsing

UW CSE401/501m-25sp

The Bottom-Up Approach

 Build up the tree from the leaves
+ Shift next input or reduce using a production

+ Accept when all input has been read and reduced to
the start symbol of the grammar

| R(k) and subsets thereof (SLR, LALR(k), ...)

to be scanned...

UW CSE401/501m-25sp

The Top-Down Approach

 Begin at the root with the start symbol of the grammar
+ Repeatedly pick a non-terminal and expand

+ Accept when expanded tree matches the input

e LL(K)

Problem

How do we know the right
choice of which production
to expand with?

UW CSE401/501m-25sp

L eft-most Derivations

* The top-down parse will be a left-most derivation
S = WAQ =>F wxy
* At each step, pick some production

A = pipyeep,

that will properly expand the

leftmost non-terminal A to
match the input

e How can we make this
choice deterministic
(i.e. no backtracking)

UW CSE401/501m-25sp

Predictive Parsing

e If we are expanding at some non-terminal A, and there
are two or more possible productions for A

A=«

Au=p
then we want to make the correct choice by looking at
just the next input symbol

e |f we can do this, we can build a predictive parser that
can perform a top-down parse without backtracking

UW CSE401/501m-25sp

Example — How can we predict?

e Seems impossible, but programming language grammars
are often suitable for predictive parsing (by design!)

e Jypical example
stmt ::= id = exp ;
return exrp ,

if (exp) stmt

while (exp) stmt

e |f the next part of the input begins with the tokens
IF LPAREN ID(x) ...

then we should expand stmt to an if-statement

Outline

LL(k) Grammars

10

UW CSE401/501m-25sp

LL(1) Property

e Def. A grammar has the LL(1) property when, for all non-
terminals A, and distinct* productions A ::= a and
A ;= [, it is the case that

+ FIRST() N FIRST() = @&, and

- (intuitively, if the lookahead is x and x € FIRST(«), then derive a.
If the lookahead is x and x € FIRST([), then derive 5.)

+ NULLABLE(A) —> FIRST(a) N FOLLOW(A) = &

- (If the lookahead is x, A is nullable, and x € FOLLOW(A), then
derive €. Otherwise if x € FIRST(a), then derive a..)

e |f a grammar has the LL(1) property, then we can build a
predictive parser for it that uses 1 symbol of lookahead

1 *distinct here means a # [}

UW CSE401/501m-25sp

LL(k) Parsers

* An LL(k) parser
+ read the input — Left-to-right not right-to-left
+ derivation order — will produce a Leftmost derivation
+ Looking ahead at most k terminal symbols

 1-symbol lookahead is enough for many practical
programming language grammars

+ LL(k) for k > 1 is rare in practice...

+ and violations of 1 lookahead are sufficiently rare that
you can just “cheat” with more lookahead where
needed in a hand-written parser

12

Table-Driven LL(k) Parsers

UW CSE401/501m-25sp

* As with LR(k), a table-driven parser can be constructed

from the grammar

A very simple LL(1) example...

1.5:=(85) S
2.5::=[S]S§
3.5 i=c¢

 Table (one row per non-terminal showing which
production to apply given the next input symbol)

(

)

[

]

$

S

1

3

2

3

3

13

UW CSE401/501m-25sp

LL vs. LR

* LR is more powerful than LL (formally)

+ LL has to make a decision based on the current non-
terminal and lookahead alone

+ LR can make a decision based on the entire stack
contents as well as lookahead

* Tools can generate parsers for LL(1) and for LR(1)
grammars

+ (editorial) so you might as well use an LR parser gen.

+ Caveat — a parser generator tool with a better
community, documentation, support, and error
messages might be a better choice even if LL-based

14

Outline

Recursive Descent

15

UW CSE401/501m-25sp

Recursive Descent Parsers

 Top-down parsing is easy to implement by hand
+ Earliest parser type still in major use (CACM Jan. 1961)

+ Implementations are much more human-readable than
generated, table-driven parsers

 Key ldea — write one procedure (function, method)
corresponding to each major non-terminal in the grammar

+ Each of these methods is responsible for matching its
non-terminal with the next part of the input

+ Like structural recursion, but patterned on the output,
(really, on the grammar) rather than the input to the
parsing pass

16

UW CSE401/501m-25sp

Example — Statements

StmtNode parseStmt() { stmt ::=1id = exp ;

sw1tch(nexFToken) { return exp ;
ID: var id = parseld(); .
match(EQ); if (exp) stmt
var exp = parsekxp(); while (exp) stmt
match(SEMICOLON);

return new AssignNode(id, exp);

IF: match(IF); match(LPAREN);
var exp = parsekExp();
match(RPAREN) ;
var stmt = parseStmt();
return new IfNode(exp, stmt);

WHILE: ..
RETURN: ..

¥
} 17

UW CSE401/501m-25sp

From Theory to Practice...

e Observe — the pattern of method calls here reflects the
leftmost derivation in the parse tree

* The example on the last slide has some deficiencies
+ Error reporting — How should errors be handled?

+ (tricky to get right) — how can/should you recover from
parse errors, so that you can continue a best-effort
parse?

18

UW CSE401/501m-25sp

Invariant for Parser Functions

* The different functions within the parser need to agree on
a convention for where the scanner token stream should
be before and after calling a function

* A good choice of invariant — When a parser function is
called, the current token (next unprocessed piece of the

input) is the token that begins the expanded non-terminal
being parsed

+ Corollary — when a parser function is done, it must
have completely consumed the input corresponding to
the non-terminal it is responsible for parsing

19

Outline

Hacking Grammars to Work Top-Down

20

UW CSE401/501m-25sp

2 Problems for Top-Down Parsers

 Left Recursion in the grammar
+ e.g9. expr .= expr + term | term

+ note: left recursion is very important for expressing left-
associative operators (most binary operators) — so this
IS a big problem we need to solve

e Shared prefixes among different productions
+ e.g. Stmt::= id=exp; | id+=exp;

+ note: this grammar is not ambiguous or complicated to
parse. We just have to defer till after id to disambiguate

21

SSSSSSSSSSSSSSSSSS

Outline

Left Recursion

22

UW CSE401/501m-25sp

The Left Recursion Problem

ExprNode parseExpr() {
var expr = parseExpr();
match(PLUS); | term
var term = parseTerm();
return AddNode(expr, term);

¥

expr ::= expr + term

Great code, right?

23

UW CSE401/501m-25sp

A Solution to Our Problem??

e Use right recursion instead!
expr .= term + expr | term
e Will this work right?

* Problem — we will not get left-associativity any more

* (sometimes the associativity doesn’t matter, but if it
does...)

24

UW CSE401/501m-25sp

A Formal Solution

* Rewrite using right recursion and a nhew non-terminal

e QOriginal grammar
expr .= expr + term | term
e New grammar

expr .= term exprtail

exprtail ::= + term exprtail | €
* Properties
+ No infinite recursion when coded directly

+ Not entirely obvious how this produces left-associativity

25

UW CSE401/501m-25sp

Another View on This Solution

 QObserve that our original grammar
expr .= expr + term | term

only generates finite sequences of the form

(---((term + term) + term) + --+) + term

e So, if we allow for using the Kleene star as sugar in our
grammar, then we can instead express the same fix as

expr .= term {+ term}*

* This expression more directly leads to code for use in our
recursive-descent parser

26

UW CSE401/501m-25sp

Fixed Recursive Descent Code

ExprNode parseExpr() {

var term = parseTerm();

var expr = term;

while (nextToken == PLUS) {
match(PLUS);
var term = parseTerm();
expr = AddNode(expr, term);

}

return expr;

¥

expr ;= term {+ term}*

27

UW CSE401/501m-25sp

Indirect Left Recursion

* There are more insidious forms of left-recursion, e.g.
A ;= Bc
B:=Ad|e€

e Solution — (step 1) transform the grammar to one where
all productions are either

A = xa (starts with a terminal symbol)
A ::= Aa (rule has direct left recursion)

then (step 2) use our preceding trick to eliminate all direct
left recursions from the grammar

28

UW CSE401/501m-25sp

Eliminating Indirect Left Recursion

e Basic idea — rewrite all productions A ::= Bf where A
and B are different non-terminals by using all B ::= ...
productions to create new productions replacing the B in
the A ::= BJf} production — i.e. we inline the B
productions

+ If there is an indirect cycle, this converts it to a direct

cycle
* e.g. original e converted
A ::= Bc A :=Adc|c

B:=Ad| e B:=Ad| e

29

SSSSSSSSSSSSSSSSSS

Outline

Common Prefixes

30

UW CSE401/501m-25sp

Common Prefixes — Left Factoring

e If two rules for a non-terminal A have right hand sides
that begin with the same symbol, then we can’t predict
which one to use. e.qg.

stmt ;= id = expr ; | id += expr ;

* Formal solution — factor out the common prefix into a
separate production. e.g.

stmt ;.= id assign
assign ;.= = expr; | += expr;

+ The non-terminal assign can now distinguish the two
cases by inspecting the first token

31

UW CSE401/501m-25sp

Example — Parser Code

StmtNode parseStmt() { stmt ;= id assign
var id = parseld(); assign ;= = expr; | += expr;

boolean reduce = false;

if (nextToken == EQ) {
match(EQ); reduce = false;

} else if (nextToken == PLUSEQ) {
match(PLUSEQ); reduce = true;

¥

var exp = parseExp();
match(SEMICOLON);
if (reduce)

return new ReduceNode(id, exp);
else

return new AssignNode(id, exp);

32

Outline

What Do Real Compilers/Interpreters Do?

33

UW CSE401/501m-25sp

Real Parsers for Major Languages

 Glossary of terms

+ Handwritten — some variant of recursive descent,
usually with some idiosyncrasies / “cheating”

+ YACC-like Parser Generator — YACC, Bison, ANTLR,
CUP etc.

+ PEG (Parsing Expression Grammars) or Parser
Combinators — a formalism for expressing only
unambiguous grammars; a very different kind of parser
generator than the ones we studied

34

UW CSE401/501m-25sp

Data on (Some) Major Languages

Handwritten

C (GCC, Clang)
Javascript (V8)
Typescript

CSS (Chromium)
Java (OpendDK)
.NET (Roslyn)

PEG

 Python (CPython)

Golang
Lua
Swift

Julia

Yacc-like Parser
Generator

Ruby

PHP (Zend Engine)
Bash

R

SQL (Postgres,
MySQL, SQLite)

)) 35)
source: Phil Eaton https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html

https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html

UW CSE401/501m-25sp

Practical Considerations

e IDEs (Integrated Development Environments) and the
Language Server Protocol

+ In order to build tools that interactively analyze source
code in IDEs, it’s often necessary to parse that source
code

* Problem — code in the middle of being edited is probably
not grammatical

+ Thus, good parsers should be interactive and tolerant
to errors. Parser error recovery is essential

 Good parser error messages make a big difference!

36

UW CSE401/501m-25sp

Onwards! and Downwards!

 We’'re done with parsing!
* Rest of this week and next
+ Checking — make sure the program is valid
+ Symbol tables — the two hardest problems in CS are?

+ |IRs — how should we represent code

37

