Lecture E:

LR Parser Construction

CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

Administrivia (1)

- Scanners due Thursday, 11:59 pm how's it going?
 - Make sure to read the MiniJava overview & Scanner assignment then reread again when you're "done"
 - Did you implement both kinds of comments
 - Did you handle every kind of token in the MiniJava grammar?
 - Anything "quoted" in the MiniJava grammar should be treated as a reserved word (Token) in MiniJava (even if it's not a single token in full Java)
 - ◆ Be sure you can handle comments at the end of the file, and files without newlines at the end (& both)
 - Scanner should continue after "invalid input character" errors
 - ◆ Be sure to terminate with correct System.exit code (0=ok, 1=errors) don't be creative with the spec
 - Take advantage of Flex regex operations that go beyond basic regexes from class if they're useful
 - Don't implement the parser yet!
 - → Reminder: you have a partner(!) take advantage of that
 - On Ed & Email: it's "We have a question" not "I have a question"

Administrivia (2)

- Coming up...
 - Today & Fri & in sections: LR Parsing and LR Parser construction
 - HW 2 (grammars, LR Parsing) out tonight or tomorrow morning
 - Mon AST visitors (now you know what you need for the Parser)
 - Parser project will be out shortly after that

Administrivia (Friday)

- Hooray! Scanners are done!
 - Was gradescope annoying?
- HW2 is out

LR Parsing Recap

"Bottom-up" Parsing — match right-hand sides

Doing this while scanning left-to-right produces a "frontier" (i.e. the stack)

Deciding when to **shift** vs. **reduce** can be decided via a DFA that recognizes valid prefixes

This DFA can be encoded into an LR table

State	action							goto		
	а	b	С	d	e	\$	Α	В	S	
0 1						асс				
1	s2								g0	
2		s4					g3			
3		s6		s5				g8		
4	r-	r-	r-	r-	r-	r-				
5	r-IV	r-IV	r-IV	r-IV	r-IV	r-IV				
6			s7							
7	r-II	r-II	r-II	r-II	r-II	r-II				
8					s9					
9	r-I	r-I	r-I	r-I	r-I	r-I				

Today's Question How do we build the DFA (and thus LR table) from a Grammar

Outline

LR(0) State Machine Construction
SLR Variation
FIRST, FOLLOW, and nullable analyses
LR(k) and LALR Variations

Outline

LR(0) State Machine Construction

SLR Variation

FIRST, FOLLOW, and nullable analyses

LR(k) and LALR Variations

LR State Machine

- Idea Build a DFA that
 - Avoids errors so long as the LR stack is a viable prefix
 - Recognizes and accepts whenever a reduction should be performed (aka. a handle is recognized)
- Because the language of viable prefixes for a CFG is regular, a DFA will suffice
- Crux of idea DFA states will correspond to sets of
 items, which keep track of where we are in the middle of
 matching the right-hand side of different production rules

Theory/Terminology (Review)

- Parsing corresponds to a rightmost derivation in reverse
 - $+ S \Rightarrow_{\rm rm} \beta_1 \Rightarrow_{\rm rm} \cdots \Rightarrow_{\rm rm} \beta_n$
- Each step is $\alpha Aw \Rightarrow_{\rm rm} \alpha \beta w$ for production $A ::= \beta$
 - + A viable prefix is a prefix γ of $\alpha\beta$ for some such step
 - i.e. these are the possible states of the LR stack
 - + The occurrence β in $\alpha\beta w$ is called a handle
- An item is a marked production (a . in its right-hand side)

$$A ::= .XY$$

+ e.g.
$$A ::= .XY$$
 $A ::= X.Y$ $A ::= XY.$

$$A ::= XY$$
.

A New Example Grammar

Example grammar

$$S' ::= S \$$$
 $S ::= (L)$
 $S ::= x$
 $L ::= S$
 $L ::= L, S$

- (note: we are now adding a production $S' ::= S \$ to normalize the handling of initial and final states)
- Question: What language does this grammar generate?

Start of LR Parse

```
(0) S' ::= S \$
(I) S ::= (L)
(II) S ::= x
(III) L ::= S
(IV) L ::= L \cdot S
```

- Initial State
 - Stack is empty (except for start state number)
 - Initial state contains the item [S' ::= . S \$]
- But, since the position (.) is just before S, we are also just before anything that can be derived from S
- What else can be derived from S (directly or indirectly)?

Initial State


```
(0) S' ::= S \$
(I) S ::= (L)
(II) S ::= x
(III) L ::= S
(IV) L ::= L \cdot S
```

- A state is just a set of items
 - start an initial set of items
 - closure (aka. completion) additional productions whose left-hand side nonterminal appears immediately following a dot in some item already in the state

Shift Actions (1)

$$[S' ::= . S \$] \\ [S ::= . (L)] \\ [S ::= . x]$$

(0) S' ::= S \$ (I) S ::= (L) (II) S ::= x (III) L ::= S $(IV) L ::= L \cdot S$

- To shift on an x, add a new state with appropriate item(s), including their closure
 - In this case, the closure adds no additional items
 - This state will lead to a reduction, since no further shift is possible.

Shift Actions (2)

```
[S' ::= . S \$] 
[S ::= . (L)] 
[L ::= . L \_S] 
[L ::= . S] 
[S ::= . (L)] 
[S ::= . X]
```

```
(0) S' ::= S \$
(I) S ::= (L)
(II) S ::= x
(III) L ::= S
(IV) L ::= L \cdot S
```

- If we shift past the (, then we are at the beginning of L
- The closure adds all productions that start with L
 - which further requires adding all productions starting with S

Goto Actions

$$\begin{bmatrix}
S' ::= . & S & \$ \\
S ::= . & (L) & \end{bmatrix}
 \begin{bmatrix}
S' ::= S & . & \$ \end{bmatrix}
 \begin{bmatrix}
S' ::= S & . & \$ \end{bmatrix}$$

(0) S' ::= S \$ (I) S ::= (L) (II) S ::= x (III) L ::= S $(IV) L ::= L \cdot S$

- Besides transitioning on terminal symbols, we also want to add transitions on non-terminal symbols. These transitions will get entered into the goto table.
 - remember: these get used to transition after reductions pop the stack

Basic Operations

for Constructing LR States

- Closure (U)
 - Returns U with all further items implied by U included
- Goto (U, X)
 - ◆ U is a set of items
 - ★ X is a grammar symbol (terminal or non-terminal)
 - * Goto moves the current position (.) past the symbol X for all items in U, discarding the item if X is not the next symbol, or including the progressed item if it is

Computing Closure(U)

- The Basic Principle
 - + If $[A ::= \alpha . B \beta]$ is in Closure(U), (B a non-terminal) and $B ::= \gamma$ is a production, then $[B ::= . \gamma]$ is in Closure(U) as well; (also U \subseteq Closure(U))
- Algorithm —
 It's a fixed point!
 i.e. keep applying
 the above principle
 until convergence.

```
Closure(U) {
  repeat {
    for (item [A ::= \alpha.B\beta] in U)
      for (production B ::= \gamma)
      U.add([B ::= .\gamma]);
  } until U does not change;
  return U;
}
```

Computing Goto(U,X)

- The Basic Principle
 - + If $[A ::= \alpha . X \beta]$ is in U, (X any symbol) and U' is the state reached by transitioning on symbol X, then $[A ::= \alpha X . \beta]$ is in U' (& both states should be closed)
- Algorithm
 Not a fixed-point (no recursion)

```
Goto(U, X) { new\_U = empty\_set(); for (item [A ::= \alpha.X\beta] in U) new\_U.add([A ::= \alpha X.\beta]); return \ \textbf{Closure}(new\_U); }
```

 Note: if the computed state already exists, then return that state, not a copy

LR(0) Construction — Init

- First, augment the grammar with an extra start production S' ::= S \$ so that the start and final states aren't special cases
- Let W be the set of states
 - + Initialize W to Closure([S' ::= .S \$])
- ullet Let E be the set of edges/transitions
 - ◆ Initialize E to { }, the empty set

LR(0) Construction — Iteration

• Another **fixed-point** algorithm (idea is basic principles)

```
repeat { for (U in W) for (item [A::=\alpha.X\beta] in U) let V = \operatorname{Goto}(\mathsf{U},X) add V to W (if not present) add (U\rightarrowV) to E (if not present) } until W and E do not change
```

 Special case — For the marker \$, we don't compute goto(U,\$); instead we make this an accept action

(0) S' ::= S\$

Example: States for

Building the Parse Tables (1)

- Let id(U) be the state number we assign to the set of items U
- For each edge $U \xrightarrow{X} V$, let i = id(U) and j = id(V)
 - + If X is a terminal, then put sj into action [i,X] (visually: column X, row i)
 - * If X is a non-terminal, then put g_j into goto[i,X] (visually: column X, row i)

Building the Parse Tables (2)

- For each state i = id(U), with item [S' ::= S.\$] in U, put **accept** into action [i,X] (visually: column \$, row i)
- For each state i=id(U), with item $[A:=\gamma.]$ in U, put action \mathbf{r} - \mathbf{n} (reduce) into every column of row i in the action table (n is the **production** number of $[A::=\gamma.]$)
 - i.e. when the DFA reaches this state, it has discovered that $A:=\gamma$ can be applied to reduce $\alpha\gamma$ to αA on the stack

Example: Tables for

```
(0) S' ::= S \$
(I) S ::= (L)
(II) S ::= x
(III) L ::= S
(IV) L ::= L \cdot S
```


Example: Tables for

```
(0) S' ::= S \$
(I) S ::= (L)
(II) S ::= x
(III) L ::= S
(IV) L ::= L \underline{,} S
```

	()	X	,	\$	S	L
0					acc		
1	s3		s2			g0	
2	r-II	r-II	r-II	r-II	r-II		
3	s3		s2			g4	g5
4	r-III	r-III	r-III	r-III	r-III		
5		s6		s7			
6	r-I	r-I	r-I	r-I	r-I		
7	s3		s2			g8	
8	r-IV	r-IV	r-IV	r-IV	r-IV		

Where do we stand?

- We have built the LR(0) state machine & parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information to *items*, but the basic ideas remain the same: states as sets of items, closure, and goto edges
- A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts in it.
 - Note: this is easily decidable, unlike the question of whether a grammar is ambiguous!

Outline

LR(0) State Machine Construction

SLR Variation

FIRST, FOLLOW, and nullable analyses

LR(k) and LALR Variations

A Grammar that is not LR(0)

State 2 has two possible actions on '+': shift 4 or reduce (II)

Resolving Conflicts

- Look at the next symbol(s) to help decide whether or not to reduce
- Different schemes LR(k), LALR(k), SLR
- SLR (Simple LR) Only reduce if the next input terminal symbol could possibly follow the resulting non-terminal
 - e.g. suppose we reach a state with the item $[A ::= \beta]$ and the next input token/terminal is x
 - * Then don't reduce, unless Ax appears in some sentence in the derivation. This is the $\nearrow \nearrow$ Idea!

SLR Parsers

- Idea (again) only reduce from $[A ::= \beta]$. If the next token x could possibly occur after an A in the derivation
 - Therefore, we need some way to answer this question
- For each non-terminal A, we want to compute the set FOLLOW(A) of all *terminal* symbols that can follow A in some possible derivation.
 - + How should we compute this?

Outline

LR(0) State Machine Construction

SLR Variation

FIRST, FOLLOW, and nullable analyses

LR(k) and LALR Variations

The Catch

$$A ::= AB$$

- $|B| ::= \ell$
 - A ::= a
- Consider the grammar
- What is the set of all terminals that can follow A?
- Well, the non-terminal B can follow A, so we need to know what possible terminals can occur **first** in a sentence derived from B
- What happens if we add a null production $A := \epsilon$?
 - ◆ Does this change which terminals can occur first in a sentence derived from A?
- So, we need to compute whether ϵ can be derived from a non-terminal A, directly or indirectly is A nullable?

A Powerful Habit of Thought

- If you feel like you're thinking in circles, STOP!
- State the basic principles with which you are thinking without trying to chase them down the rabbit hole
 - Remember the power of writing things down!
- Even more basic, let's try to define things first
 - FOLLOW(A) is the set of all terminals x that follow A in some derived sentence.
 - FIRST(A) is the set of all terminals x that occur first in some sentence derived from A
 - * NULLABLE(A) is true if ϵ derives from A
- note: use of NULLABLE is different than our textbook

Consider one Production

- How do FOLLOW(A), FIRST(A) and NULLABLE(A) relate to those sets on the symbols X_i ?
- e.g. suppose x is in FOLLOW(A). Then what do we know?

NULLABLE Principles

- (base cases) $NULLABLE(\epsilon)$ is true, and NULLABLE(x) for any terminal x is false
- If all of $NULLABLE(X_i)$ are true for $0 \le i \le n$, then NULLABLE(A) must be true as well

FIRST Principles

- (base cases) $FIRST(\epsilon) = \{\}$ and $FIRST(x) = \{x\}$
- Idea $-FIRST(A) = FIRST(X_0)$?
 - What if $NULLABLE(X_0)$ is true?
- Correction If $NULLABLE(X_i)$ for $0 \le i < k$, then $FIRST(X_k) \subseteq FIRST(A)$

FOLLOW Principle

- no base cases...
- Idea $FOLLOW(A) \subseteq FOLLOW(X_n)$
- Correction If $NULLABLE(X_i)$ for $k < i \le n$, then $FOLLOW(A) \subseteq FOLLOW(X_k)$
- But how do we get anything into FOLLOW to start?

FOLLOW / FIRST Principle

- Idea intuitively X_{k+1} follows X_k so if the terminal x is in $FIRST(X_{k+1})$ is, it must follow X_k
- What if some of the X_k are nullable?
- Correction If $NULLABLE(X_i)$ for j < i < k, then $FIRST(X_k) \subseteq FOLLOW(X_j)$

Basic Principles on One Slide

- $NULLABLE(\epsilon)$ is true
- $FIRST(\epsilon) = \{\}$ and $FIRST(x) = \{x\}$
- If $A ::= X_1 X_2 \cdots X_n$ and for all X_i , $NULLABLE(X_i)$ is true, then NULLABLE(A) is true.
- If $A ::= X_1 X_2 \cdots X_k \cdots X_n$ and $NULLABLE(X_i)$ for $1 \le i < k$, then $FIRST(X_k) \subseteq FIRST(A)$
- If $A ::= X_1 X_2 \cdots X_k \cdots X_n$ and $NULLABLE(X_i)$ for $k < i \le n$, then $FOLLOW(A) \subseteq FOLLOW(X_k)$
- If $A ::= X_1 X_2 \cdots X_j \cdots X_k \cdots X_n$ and $NULLABLE(X_i)$ for j < i < k, then $FIRST(X_k) \subseteq FOLLOW(X_j)$

Principles → Algorithm

```
FIRST[A] = {} // for all non-terminals A
FOLLOW[A] = {} // for all non-terminals A
NULLABLE[A] = false // for all symbols A
FIRST[x] = {x} // for all terminals x
repeat
  for each production A ::= X1, X2, ... Xn
    if X1, X2, ... Xn are all NULLABLE (or n=0) then
      set NULLABLE[A] = true
    for each k from 1 to n, and each j from 1 to k-1
      if X1, X2, ... X(k-1) are all NULLABLE (or k=1) then
        add FIRST[Xk] into FIRST[A]
      if X(k+1), ... Xn are all NULLABLE (or k=n) then
        add FOLLOW[A] into FOLLOW[Xk]
      if X(j+1), ... X(k-1) are all NULLABLE (or j+1=k) then
        add FIRST[Xk] into FOLLOW[Xj]
until FIRST, FOLLOW, and NULLABLE do not change
```

Example

Grammar

NULLABLE

FIRST

FOLLOW

$$Z ::= d$$

$$Z ::= X Y Z$$

$$Y ::= \epsilon$$

$$Y ::= c$$

$$X ::= Y$$

$$X ::= a$$

X no

Y no

Z no

Example

Grammar		NULLABLE	FIRST	FOLLOW
Z ::= d $Z ::= X Y Z$	X	yes	a, c	a, c, d
$Y ::= \epsilon$ $Y ::= c$	Y	yes	С	a, c, d
X ::= Y $X ::= a$	Z	no	a, c, d	

Outline

LR(0) State Machine Construction

SLR Variation

FIRST, FOLLOW, and nullable analyses

LR(k) and LALR Variations

LR(0) Reduce Actions (review)

- In an LR(0) parser, if a state contains a reduction, it is unconditionally applied regardless of the next input symbol
- Algorithm (DFA & Table construction)

```
initialize R to empty for each state U in W for each item [A := \alpha] in U add (U, A := \alpha) to R
```

SLR Construction

- This is identical to LR(0) same construction of states,
 DFA transitions, etc. Only change calculation of reduce actions
- Algorithm

```
initialize R to empty for each state U in W for each item [A := \alpha \, .] in U for each terminal x in FOLLOW[A] add (U, x, A := \alpha) to R
```

SLR Parser for Earlier Example

Using the FOLLOW criteria, we filter out some reductions

Outline

LR(0) State Machine Construction

SLR Variation

FIRST, FOLLOW, and nullable analyses

LR(k) and LALR Variations

On to LR(1)

- Many practical grammars are SLR
- But LR(1) is even more powerful
- Similar construction, but the notion of an item is now more complex in order to incorporate Look-ahead information (LR(1) = LR with one lookahead)
 - Now lookahead information is associated with specific items rather than using FOLLOW for the non-terminal
 - using FOLLOW is less powerful, because it doesn't track as much context about where a given terminal appears in the derivation

LR(1) Items

- A general LR(0) item is $[A ::= \alpha . \beta]$
- A general LR(1) item is $[A ::= \alpha . \beta, x]$, consisting of
 - + a grammar production $A ::= \alpha \beta$
 - a right-hand side position (the dot)
 - * a lookahead terminal symbol (x)
- Idea This item indicates that α is on the top of the stack, and it would still be possible to match the next sequence of tokens with βx
- For a full construction, see the book

LR(1) Tradeoffs

- LR(1)
 - Pro more precise; LR(k) admits the largest number of grammars
 - Con can produce very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
 - + e.g. these two would be merged

$$[A ::= x \cdot y, a]$$

$$[A ::= x \cdot y, b]$$

to produce

$$[A ::= x . y, ab]$$

LALR(1) vs. LR(1)

- LALR(1) tables can have many fewer states than LR(1)
 - somewhat surprising result will actually have the same number of states as SLR parsers, even though LALR(1) is more powerful, because of more fine-grained lookahead information in states
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)
- Most practical bottom-up parser generator tools use LALR(1) parser construction (e.g. yacc, bison, CUP, ...)

Language Hierarchies

Context-Free Languages

Next Week

- Lecture
 - ASTs & Visitor Pattern
 - LL(k) Parsing Top-Down parser generators
 - Recursive Descent Parsers
 - What to do if you want a parser in a hurry
- Sections Next Week
 - AST Construction What your parser actually does!
 - Visitor Pattern details how to traverse ASTs for further processing (in type checking, code gen, etc.)