Lecture E:

LR Parser
Construction

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein
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Administrivia (1)

e Scanners due Thursday, 11:59 pm — how’s it going?

+ Make sure to read the Minidava overview & Scanner assignment — then
reread again when you’re “done”

* Did you implement both kinds of comments
* Did you handle every kind of token in the MiniJava grammar?

* Anything “quoted” in the MiniJava grammar should be treated as a reserved
word (Token) in Minidava (even if it’s not a single token in full Java)

+ Be sure you can handle comments at the end of the file, and files without
newlines at the end (& both)

+ Scanner should continue after “invalid input character” errors

+ Be sure to terminate with correct System.exit code (0=ok, 1=errors) — don’t
be creative with the spec

+ Take advantage of Flex regex operations that go beyond basic regexes from
class if they’re useful

+ Don’t implement the parser yet!
+ Reminder: you have a partner(!) — take advantage of that
* On Ed & Email: it’s “We have a question” not “I have a question”
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Administrivia (2)

e Coming up...

+ Today & Fri & in sections: LR Parsing and LR Parser
construction

+ HW 2 (grammars, LR Parsing) out tonight or tomorrow
morning

+ Mon — AST visitors (how you know what you need for
the Parser)

e Parser project will be out shortly after that
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Administrivia (Friday)

e Hooray! Scanners are done!
+ Was gradescope annoying?
e HW2 is out
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LR Parsing Recap

“Bottom-up” Parsing — [ep]:=[expr + expr]
- - v
match right-hand sides

A
Doing this while scanning |

left-to-right produces a a|lb|blc d e
“frontier” (i.e. the stack) == t

Deciding when to shift vs. ;

reduce can be decided via OO >PO=Q ra

a DFA that recognizes valid é}
preflxeS A:i=b B:=d

. State [— - Cactiond - - . gc;to .
This DFA can be encoded ) .

into an LR table

r-I1Vv r-I1V r-IV r-IV r-IV r-1V
s7
r-II r-II r-II pr-II pr-II r-II
s9
r-I r-I r-1 r-1 r-I r-I
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Today’s Question

How do we build the DFA
(and thus LR table) from
a Grammar



Outline

LR(0) State Machine Construction
SLR Variation

FIRST, FOLLOW, and nullable analyses
LR(k) and LALR Variations
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LR(0) State Machine Construction
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LR State Machine

* |dea — Build a DFA that
+ Avoids errors so long as the LR stack is a viable prefix

+ Recognizes and accepts whenever a reduction should
be performed (aka. a handle is recognized)

 Because the language of viable prefixes for a CFG is
regular, a DFA will suffice

e Crux of idea — DFA states will correspond to sets of
items, which keep track of where we are in the middle of
matching the right-hand side of different production rules
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Theory/Terminology (Review)

* Parsing corresponds to a rightmost derivation in reverse

+ 5 = rm :Bl =~ " ~m ﬁn

e Eachstepis aAw = afpw for production A ::= f3

+ A viable prefix is a prefix y of aff for some such step

- I.e. these are the possible states of the LR stack

+ The occurrence f# in afw is called a handle

* Anitem is a marked production (a . in its right-hand side)

+ e.q.

A

. XY

A:=X.Y

10
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A New Example Grammar

e Example grammar

S'=53
S:=((L)
S ==z
L:=S5
L:=L,S
e (note: we are now adding a production 8’ ::= S $ to

normalize the handling of initial and final states)

* Question: What language does this grammar generate?
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Start of LR Parse

e |nitial State
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(0)S" =:=S5$

(I) S==(CL)
(II) S ===z
(III) L:=:=S
IV) L:=L, S

+ Stack is empty (except for start state number)

+ Initial state contains the item [S’ ::=. S §]

e But, since the position (.) is just before S, we are also just

before anything that can be derived from S

 What else can be derived from S (directly or indirectly)?
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(II) S:==x
(IT1I) L :=
:S, = S $] e‘—\start (IV) Lz=L, S
Si=. (L) 4= |
: Q= x] — completion

e A state is just a set of items
+ start — an initial set of items

+ closure (aka. completion) — additional productions
whose left-hand side nonterminal appears immediately
following a dot in some item already in the state
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Shift Actions (1)

S =

S =
S =

.S §]

(L)]

. X]
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(0)S" =:=S5$

(I) S==(CL)
(II) S ===z
(III) L:=:=S
(IV) Lz=L, S

S ::

e To shift on an x, add a new state with appropriate item(s),

including their closure

+ In this case, the closure adds no additional items

+ This state will lead to a reduction, since no further shift
IS possible.
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Shift Actions (2
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S =

S =
S =

.S §]

(L)]

. X]

e |f we shift past the (, then we are at t

S = (.L)]
L:=.L,S]
L= .9]
S =, (L)]
S = X

ne beginning of L

* The closure adds all productions that start with L

+ which further requires adding all productions starting

with S

1
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Goto Actions Dy
(II) S ===z
(III) L :=
Ol (IV) Lz=L, S
:S =. 5 %] S ,
S:=. (L) —[S:=S.9]
S = x]

e Besides transitioning on terminal symbols, we also want
to add transitions on non-terminal symbols. These
transitions will get entered into the goto table.

+ remember: these get used to transition after reductions
pop the stack
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Basic Operations
for Constructing LR States

e Closure (U)

+ Returns U with all further items implied by U included
e Goto (U, X)

+ Uis a set of items

+ Xis a grammar symbol (terminal or non-terminal)

+ Goto moves the current position ( . ) past the symbol X
for all items in U, discarding the item if X is not the next
symbol, or including the progressed item if it is

17
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Computing Closure(U)

 The Basic Principle

+ If[A ::=a.Bf]isin Closure(U), (B a non-terminal)
and B ::= y is a production, then |B ::= .y] is in
Closure(U) as well; (also U € Closure(U) )

’ Algorlthm o Glosur'e(u) { \
It’s a fixed point! repeat {
l.e. keep applying for (item [A ::=a.Bf] in U)
the above principle for (production B ::=7y)
until convergence. U.add([B ::=.7]);
} until U does not change;
return U;

\ J
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Computing Goto (U, X)
 The Basic Principle

+ If[A =a.X[f]isinU, (X any symbol) and U’ is the
state reached by transitioning on symbol X, then
[A ;== aX.[f]isin U’ (& both states should be closed)

e Algorithm Goto(u, X) { \
Not a fixed-point new U = empty_set();
(no recursion) for (item [A = a.Xf] in U)

new U.add([A = aX.f]);
return Closure(new U);

\ J
* Note: if the computed state already exists, then return
that state, not a copy
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LR(0) Construction — Init

* First, augment the grammar with an extra start production
S’ ::= §$ so that the start and final states aren’t special
cases

e Let W Dbe the set of states
+ Initialize W to Closure([S' ::=.S$])

e Let E be the set of edges/transitions

+ Initialize E to {}, the empty set
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LR(0) Construction — lteration

* Another fixed-point algorithm (idea is basic principles)

fr‘epeat {

for (U in W)
for (item [A i:=a.X/f] in U)
let V = Goto(U,X)
add V to W (if not present)

\}until W and E do not change

~

add (U—V) to E (if not present)

_J

e Special case — For the marker $, we don’t compute
goto(U,$); instead we make this an accept action
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Example: States for DS
1 0 (II)Siix
<>ZS’::= .S §] > ﬁs'ﬁ:& 5] e L
— S = .(L)] 2
S = x] X >/[S::=x.]< A
e ]
S:=(.L)] ( (7)
( sl[L:=.L, 5 L:=L,.S]
C:L”: 5] @ S :=.(L)]
5 = (L)] L JIS==(L.)] > [§ = x]
S = . x] IL:=L.,S]
“ ) g
D S| ® ®
[L::=S.] S = (L).] [L==L,S5.]
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Building the Parse Tables (1)

e Letid(U) be the state number we assign to the set of
items U

e Foreach edge U A V, let i=id(U)andj =id(V)

+ If X is a terminal, then put s into action[i,X]
(visually: column X, row 1)

+ If X is a non-terminal, then put into goto[1,X]
(visually: column X, row 1)
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Building the Parse Tables (2)

e For each state i = id(U), withitem [S" ::= S .$] in U,
put accept into action[i,X] (visually: column $, row i)

e Foreach statei = id(U), withitem [A ::=7y.]in U, put
action r-n (reduce) into every column of row 1 in the
action table (n is the production number of [A ::=7.])

+ i.e. when the DFA reaches this state, it has discovered

that A ::= y can be applied to reduce ay to aA on the
stack

24
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Example: Tables for

L
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()

(N

25

(0)S =5 §
(I) S:= (L)
(1) S
(III) L ::
(IV) L:=1L S
s ©
[S’ =.959] [ :=S5. 9]
[S:=.(L)] o
[S = . x] =3 [Su=x.] fe -
( ) ) N
[S:=(.L)] ( 7
[L:=.L,S] e
L:=.S] (5) e
[S:=.(L)] L J[Su=(L.)] 2 [S;;= x]
[S :=. x] [L:=L.,S]
S
4 S y @ )\l 8 Jl
[L:=S.] [S:=(L).] [L:=L,S.]
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Example: Tables for D5
1) s
(IV) Lz=1L, S

e CD[S’ N — @s'-—s 5]
s3 s2 go — [S :.:.=_..(L)] 5 .
. X\ B X
o | IO | e | RN | N | 15 5= -« isi=xd |
(
s3 S2 g4 gd5 @ ~ X
[S = (. L)] ( @
r-1l1 -1 =0 =1 =11 (C [L:=.L,S] C\ P
[L::=.S] S _ -
© o ity | Qe i
-l -l -l -l 5= ] \Lu=L., 5]
S
s3 S2 g8 (z? Y () (s];} v
[L:=S.] [S:=(L).] [L:=L,S.]
-IV r-IV r-IV r-IV r-IV -
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Where do we stand?

* \We have built the LR(0) state machine & parser tables
+ No lookahead yet

+ Different variations of LR parsers add lookahead
information to items, but the basic ideas remain the
same: states as sets of items, closure, and goto edges

* A grammar is LR(0) if its LR(0) state machine (equiv.
parser tables) has no shift-reduce or reduce-reduce
conflicts in it.

+ Note: this is easily decidable, unlike the question of
whether a grammar is ambiguous!

27
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SLR Variation
FIRST, FOLLOW, and nullable analyses
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A Grammar that is not LR(0)

State 2 has two possible actions on ‘+’: shift 4 or reduce (ll)

@ £(© 0

— , JE':=FE$
E':=.E$] —[E ==E.$] (I) Ex=T+E
T ::= . x] — |k =T .+ E] L
£ =T .] y . ¢ E T
X o
+ T 0 acc
@ — X @ 1| s4 g0 g2
[T :=x.] :gii= T;‘l;;]] 2| el e, 83 pell
Lii=.1++ 3| s4 g5 g2
GD[E T4+ E.k E|[E:=.T] A0 eIl - -l
T ' T:=.x] sl kMl -l

29
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Resolving Conflicts

* Look at the next symbol(s) to help decide whether or not
to reduce

e Different schemes — LR(k), LALR(k), SLR

e SLR (Simple LR) — Only reduce if the next input terminal
symbol could possibly follow the resulting non-terminal

+ e.g. suppose we reach a state with the item [A ::= . ]
and the next input token/terminal is x

+ Then don’t reduce, unless Ax appears in some
sentence in the derivation. This is the /°¢° Idea!

30
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SLR Parsers

 |dea (again) — only reduce from [A ::= f. ] if the next
token x could possibly occur after an A in the derivation

+ Therefore, we need some way to answer this question

e For each non-terminal A, we want to compute the set

FOLLOW(A) of all terminal symbols that can follow A in
some possible derivation.

+ How should we compute this?

31
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SLR Variation
FIRST, FOLLOW, and nullable analyses
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The Catch A = AB

e Consider the grammar |A =4

e What is the set of all terminals that can follow A?

e Well, the non-terminal B can follow A, so we need to
know what possible terminals can occur first in a

sentence derived from B

e What happens if we add a null production A ::= €?

+ Does this change which terminals can occur first in a
sentence derived from A?

e S0, we need to compute whether € can be derived from a
non-terminal A, directly or indirectly — is A ?

33
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A Powerful Habit of Thought

e If you feel like you’re thinking in circles, STOP!

e State the basic principles with which you are thinking
without trying to chase them down the rabbit hole

+ Remember — the power of writing things down!

 Even more basic, let’s try to define things first

+ FOLLOWI(A) is the set of all terminals x that follow A in
some derived sentence.

+ FIRST(A) is the set of all terminals x that occur first in
some sentence derived from A

+ is true if € derives from A
e note: use of NULLABLE is different than our textbook

34
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Consider one Production

* How do FOLLOW(A), FIRST(A) and
relate to those sets on the symbols X, ?

e e.g.suppose xisin FOLLOW(A). Then what do we
know?

35
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Principles

e (base cases) is true, and
for any terminal x is false

o If all of are true for 0 <1 < n, then
must be true as well

36
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FIRST Principles

A

T
X, - X, - X

n
e (base cases) FIRST(¢) = {} and FIRST(x) = {x}
o Idea — FIRST(A) = FIRST(X,) ?

+ What if is true?

e Correction — If for 0 < i <k, then
FIRST(X;) C FIRST(A)

37
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FOLLOW Principle

* NO base cases...
e Idea — FOLLOW(A) C FOLLOW(X,)

e Correction — If for k < i < n, then
FOLLOW(A) C FOLLOW(X,)

e But how do we get anything into FOLLOW to start?

38



FOLLOW / FIRST Princip|eum°"5““5”

A
[T

X, - X, - X

n

e Idea — intuitively X, | follows X, so if the terminal x is in
FIRST(X, ) is, it must follow X,

e What if some of the X are nullable?

e Correction — If forj < i < k, then
FIRST(X,) € FOLLOW(X))
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Basic Principles on One Slide

. Is true

e FIRST(¢) ={}and FIRST(x) = {x}

o IfA 1= X X,---X, and for all X is true, then

Is true.

o IfA ::=XX5---X---X and forl <i <k,
then FIRST(X},) C FIRST(A)

¢ IfA =X X,---X,---X and fork <i < n,
then FOLLOW(A) C FOLLOW(X,)

o IfA =X Xy oo X;ee X o X, and for

J < i<k, then FIRST(X,) C FOLLOW(X;)

40
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Principles — Algorithm

FIRST[A] = {} // for all non-terminals A
FOLLOW[A] = {} // for all non-terminals A
[A] = false // for all symbols A
FIRST[X] = {x} // for all terminals x
repeat
for each production A ::= X1, X2, .. Xn
if X1, X2, .. Xn are all (or n=0) then
set [A] = true
for each k from 1 to n, and each j from 1 to k-1
if X1, X2, .. X(k-1) are all (or k=1) then
add FIRST[Xk] into FIRST[A]
if X(k+1), .. Xn are all (or k=n) then
add FOLLOW[A] into FOLLOW[Xk]
if X(j+1), .. X(k-1) are all (or j+1=k) then
add FIRST[Xk] into FOLLOW[X]]

until FIRST, FOLLOW, and do not change

41



Grammar
L= X no
/. =XYZ
Y i =¢€ Y ne
Y :=¢c
X:i=Y
Z
X i=a no

42
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FOLLOW
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FOLLOW



Outline

SLR Variation
FIRST, FOLLOW, and nullable analyses
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LR(0) Reduce Actions (review)

* |In an LR(0) parser, if a state contains a reduction, it is
unconditionally applied regardless of the next input

symbol
e Algorithm (DFA & Table construction)

(/;nitialize R to empty ‘\\

for each state U in W
for each item [A::=a.] in U

\\g add (U, A= =a) to R 4/)

45
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SLR Construction

 This is identical to LR(0) — same construction of states,
DFA transitions, etc. Only change calculation of reduce
actions

e Algorithm

.

initialize R to empty
for each state U in W

for each item [A::=a.] in U
for each terminal x in FOLLOW[A]

\\g add (U, x, A:=a) to R 4//

~

46
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SLR Parser for Earlier Example
Using the FOLLOW criteria, we

@

£(©

' :=.ES] M——[E :=E.9]
—|E :=. T+ E]
E.=.T] T@
T ::= . x] —||E =T .+ E]
|E =T .]
X
+ T
@l el |
1T ::=x.] [¢ E =T+ . E]
E..=.T+ E]
@ E |[E::=.T]
|E =T+ E .| T = . «]

47
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some reductions

(0)E =:=FE$
(I) Ex:=T+FE
(II) E==T
(III) T ===
X + $ E T
acc
s4 g0 g2
s3, r-1l
s4 g5 g2
-1l r-l
r-1
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LR(k) and LALR Variations
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On to LR(1)

* Many practical grammars are SLR
 But LR(1) is even more powerful

e Similar construction, but the notion of an item is now
more complex in order to incorporate Look-ahead
information ( LR(1) = LR with one lookahead )

+ Now lookahead information is associated with specific
items rather than using FOLLOW for the non-terminal

+ using FOLLOW is less powerful, because it doesn’t
track as much context about where a given terminal
appears in the derivation

49
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LR(1) ltems

e Ageneral LR(0) itemis [A ::=a.f]

e Ageneral LR(1)itemis [A ::= a. 3, x], consisting of

+ a grammar production A ::= af}
+ aright-hand side position (the dot)

+ a lookahead terminal symbol (x)

e |dea — This item indicates that  is on the top of the
stack, and it would still be possible to match the next

sequence of tokens with fx

e For a full construction, see the book

50
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LR(1) Tradeoffs

e LR(1)
+ Pro — more precise; LR(k) admits the largest number of
grammars

+ Con — can produce very large parse tables with many
states
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LALR(1)

e Variation of LR(1), but merge any two states that differ
only in lookahead

+ e.g. these two would be merged

An=x.y,d]
A:=x.y, D]
to produce

[A ::=x.y, ab]

52
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L ALR(1) vs. LR(1)

 LALR(1) tables can have many fewer states than LR(1)

+ somewhat surprising result — will actually have the
same number of states as SLR parsers, even though
LALR(1) is more powerful, because of more fine-grained
lookahead information in states

 LALR(1) may have reduce conflicts where LR(1) would not
(but in practice this doesn’t happen often)

 Most practical bottom-up parser generator tools use
LALR(1) parser construction (e.g. yacc, bison, CUP, ...)
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Language Hierarchies

Context-Free
Languages

/ unambiguous grammars

~

LIE_(kN

AL

LL(1)

LL(O

P

only
ambiguous

grammars
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Next Week

e Lecture
+ ASTs & Visitor Pattern
+ LL(k) Parsing — Top-Down parser generators
+ Recursive Descent Parsers
- What to do if you want a parser in a hurry
e Sections Next Week
+ AST Construction — What your parser actually does!

+ Visitor Pattern details — how to traverse ASTs for
further processing (in type checking, code gen, etc.)
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