UW CSE401/501m-25sp

Lecture D:

LR Parsing

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein



Administrivia

e HW1 due last night
+ 1-2 late days? don’t blow all your late days now!
e Project
+ Scanner due Thursday; but TEST infrastructure now

+ DO NOT start on the parser yet — just edit the token classes
in the .cup file (and small edits to build)

+ Almost everyone paired up; please, please respond if you're
not paired

e HW2 (LR Parsing & Grammars) — due in 2 weeks; will post when
we get enough background done (prob. Monday)

e Room for Sections next week is moved to Savery 131 (if you
show up to SAV 166, there is a notice that redirects you)

2



UW CSE401/501m-25sp

Administrivia (Monday)

* Project

+ Scanner due Thursday; please also complete the
Gradescope step (reason: experiment to try to reflect all
numeric grades in gradescope this year)

e HW2 (LR Parsing & Grammars) — will wait till Wed.

e Room for Sections this week is Savery 131 (if you show
up to SAV 166, there is a notice that redirects you)



Outline

LR Parsing
Automating Parsing
Table-driven Parsers

LR States
Shift-Reduce & Reduce-Reduce Conflicts



Outline

LR Parsing



UW CSE401/501m-25sp

Bottom-Up Parsing

e Easy to get all the different directions mixed up
+ read the input — left-to-right not right-to-left
+ derivation order — will produce a rightmost derivation

+ “bottom-up” — will match the right-hand side of
productions, not the left-hand side non-terminal

e Keyidea — whenever we match a complete right-hand-side
pattern of a production, we can replace that series of tokens
with the left-hand-side non-terminal, e.g.

Top-Down Bottom-Up

\/ \/



Example

Udkm

| |
s

PN

ABe

be | b




Example

UULBUJ

| |
s

PN

ABe

be | b




Example

UULBUJ

| |
s

PN

ABe

be | b




Example

10

UULBUJ

| |
s

PN

ABe

be | b




555555555555555555

Example

11



555555555555555555

Example

12



Example

UULBUJ

| |
s

PN

ABe

be | b




555555555555555555

Example

14



Example

UULBUJ

| |
s

PN

ABe

be | b




Example

Udtbm

S

PN

ABe

be | b




Example

17



UW CSE401/501m-25sp

LR(1) Parsing

e We'll look at LR(1) parsers

+ Left-to-right scan of input, Rightmost derivation,
1 symbol lookahead

+ Almost all practical programming languages have an
LR(1) grammar

* LALR(1), SLR(1), etc. — subsets of LR(1)

+ LALR(1) can parse most real programming languages.
tables are more compact and is used by YACC /
Bison / CUP / etc.

18



Analyzing the Example

This is called the
Frontier of the parse  Two Kinds of Steps

A

a b bIc d e

We haven’t

This is the current >

position of the Scanner tokens yet

19

UW CSE401/501m-25sp

S .:=aABe
A= Abc | b
B :=d

f‘ Reduce — the frontier moves up
‘ Q\Shift — the frontier moves right

scannhed these



Recording the Parse | s:=a5

Frontier

$ | abbcde$
$a|bbcde$
$ab|bcde$
$aA|bcde$
$aAb | cde$
$aAbc |de$
$aA|de$
$aAd|e$
$aAB|e$
$aABe|$
$5|$

Action

Shift
Shift
Reduce
Shift
Shift
Reduce
Shift
Reduce
Shift
Reduce
Accept

'= aABe

20

UW CSE401/501m-25sp

A= Abc | b
B:=d

In Reverse
S

= ., aABe
= ., aAde
= ., aAbcde
= .5, abbcde

a rightmost derivation



UW CSE401/501m-25sp

LR Parsing in Greek

* The bottom-up parser reconstructs the rightmost
derivation, in reverse

e (Consider the rightmost derivation of our input seq. w
+ 5 =m :Bl =m :BZ =m " =rm :Bn—l = m :Bn =W
+ The parser discovers each step in reverse, I.e.

ﬂl’l—l =>rm /Bn then ﬂn—z =>1‘m /Bn_l, etc.
e Parsing terminates when

+ [, isreduced to § (start symbol, success), or

+ no match can be found (syntax error)

21



UW CSE401/501m-25sp

How Do We Parse With This?

* Given what we’ve already seen and the next input symbol
(the lookahead) decide what to do

+ Shift — Ask the scanner for another token

+ Reduce — Perform a reduction (inverse derivation step)

e Canreducevia dAw =__ affiw when

+ w € 2* (the rest of the sentence is terminal)

- note: guaranteed by left-to-right scan
+ A ::= fis avalid production

* This is the formal justification for shift-reduce parsing

22



UW CSE401/501m-25sp

Terminology (Useful?)

* You will see books and sources refer to the strings of
symbols in a derivation as sentential forms

+ This is just a fancy word for sentence, which is just a
string of symbols)

+ In a rightmost derivation, right-sentential form

* The site (location) of a reduction is called a handle

+ A handle is a pair of a production and integer telling us
which substring to reduce using that production

+ i.e. for reduction/production step aAw =__ afiw, the

handle is (A ::= f, k) where k is the length of af}
(i.e. right-index convention; some books use left)

23



Handles: Examples

$ | abbcde$
$a|bbcde$
$EIE|| bcde$
$aA|bcde$
$aAb | cde$

$dAbc|| des

$aA|de$

Shift
Shift
Reduce
Shift
Shift
Reduce
Shift
Reduce
Shift
Reduce
Accept

24

UW CSE401/501m-25sp

= [2ABe
:I'Hl a@

= . d4Abcde

= m aIEIacde



UW CSE401/501m-25sp

Implementing LR Parsers
A

a | b bIc d e

e State — Data Structures
+ a stack of symbols — representing the frontier
+ a stream of unread terminals — i.e. the scanner

e A function that uses (a) the state (i.e. stack) and (b) one-
symbol lookahead to decide what action to take (e.g. to
shift, or to reduce using which production)

25



UW CSE401/501m-25sp

Shift-Reduce Parser Actions

e Shift —Push the next symbol onto the stack and get the
next token from the scanner

 Reduce — Using production A ::= /3, pop f from the top
of the stack and push A in its place

e Accept — The stack contains only S. Announce success

 Error — Syntax error discovered

26



UW CSE401/501m-25sp

Early Errors? S = aABe
A= Abc | b
* Naively, if we can’t reduce, B-—d

we can always shift.

So, how will we get stuck (and thus error)?

e Consider the sentence dadbabe (aka. hotpop)

+ How long do we need to read input before we can
report an error? Why?

* Prefixes — consider valid first terminal symbols

+ S = aABe, so a is the only valid first character

+ Valid second character?

27



Outline

Automating Parsing

28



UW CSE401/501m-25sp

Definition: Viable Prefixes

* (most useful) a viable prefix is a sentence that can occur
as the contents of the stack during LR parsing

e (with more terminology, but less greek) a viable prefix is
a prefix of a right-sentential form that does not continue
past the rightmost handle of that sentential form

e (with greek) the sentence y is a viable prefix if there
exists some derivation S =* aAw = _ afwandyis a
prefix of aff

29



UW CSE401/501m-25sp

How Do We Automat/e! LR Parsing?
d

o |et’s exploit viable prefixes

+ Fact — The set of viable prefixes of a CFG is a
regular language

e |dea 1: Construct a DFA to recognize viable prefixes
+ This will help us with errors for sure, but what else?

e |dea 2: The DFA that recognizes viable prefixes can also
recognize whether the top of the stack (right of the prefix)
is reducible (is a “handle”)

+ Thus, we can use a DFA to tell us when to reduce

30



Step
Magically Produce a DFA



DFA for Prefixes of

S .:=aABe
A= Abc | b
accept br=d
@ @ S ::= aABe
S




Trace Using DFA

$|ab
$a|b
$ab |
$aA |
$aAb

bcde$
bcde$
bcde$

bcde$
| cde$

$aAbc |de$
$aA|de$

$aAd

|e$

$aAB|e$
$aABe|$

$51%

accept

UW CSE401/501m-25sp

S :=aABe
A= Abc | b
B :=d

l 3(3) - waoe
—>@ e G O

33

A =b B =d




UW CSE401/501m-25sp

Observations

 Way too much backtracking

+ We want the parser to run in time proportional to the
ength of the input

 Where did this DFA come from anyway?

+ From the underlying grammar

+ We'll defer construction details for now

34



UW CSE401/501m-25sp

Avoiding DFA Rescanning

e Observations

+ There’s no need to restart the DFA after a shift

+ After a reduction, the stack is the same except a new
non-terminal replaces the top k symbols symbols

* Thus, scanning the stack will largely repeat the same,
already taken transitions.

* We can record state numbers on the stack to help us
back up to the correct state after performing a reduce

35



UW CSE401/501m-25sp

Alt. Stack Encoding  [s=aane
A= Abc | b
B:=d

accept

<::> S ;= aABe
original stack encodin
9 ; l@#

$aAb|cde$

What state are we in? ‘&b B J

What sequence of Two alternate encodings
states did we traverse? of the stack

<> : @ A @ b $1236
@ $1a2A3b6 |




UW CSE401/501m-25sp

Alternate Stacks in General

e QOriginal Stack — sentence of terminals & non-terminals
e New stack — an interleaved sequence of symbols and

state identifiers
+ $S0X1S1X2S2. . 'ann |

o State s, is the start state of the DFA

o If shift transitions in the DFA via f) s, then we push Xs

onto the stack. Thus, the stack is the DFA trace.

e When we reduce, the new top of the stack tells us which
state to back up to

37



Outline

Table-driven Parsers

38



UW CSE401/501m-25sp

Analyzing DFA Actions | s:= a5

A= Abc | b
Transitions on terminals B e
must be shift actions accept

&)
If we're at a production @ = @lS::z aABe)
labeled node, AND no D ~T B :
shift actions apply, then @-A,@l (&) @'A = Abg)

we should reduce

Note: Roman numerals 'A@)' 19” (I) S ::=aABe

to track productions T v | (D A= Abe
(IIT) A:==1b

pop production RHS (V) B e d

from stack, push the
nonterminal LHS and
the next state

39



UW CSE401/501m-25sp

Encoding the DFA in a Table

e One row for each state of the DFA

 Two groups of columns

+ action table — one column per terminal symbol; tells
us which action to take

+ goto table — one column per non-terminal symbol;
helps us make correct state transitions after a reduce.
We’ll see how in a second (slightly counter-intuitive)

40



UW CSE401/501m-25sp

Example
LR Parse Table

action goto
State a b C d e $ A B S
%)
1
2
3
4
Z (I) S ::=aABe
5 (II) A ::= Abc
8 (I]I) A:x=0b
9 (IV) B ==d

41



accept UW CSE401/501m-25sp

S ;.= aABe

Example

I
LR Parse Table o
A ::= Abc)
(II)
action goto

State a b C d e $ A B S

%) acc

1

2

3

4

Z (I) S ::=aABe

7 (]I) A = AbC

8 (IIT) A:==b

0 (IV) B =:=d

42




Example
LR Parse Table

action
State 3 5 c . o g
%) acc
S2
s4
S6 S5

r-IIT r-III r-III

r-1v. r-IV. r-1IV
s/

r-II r-II r-I1

O o0 N O UL B WINBR

r-I r-I r-I

r-III r-III r-III
r-IV r-IV r-IV

r-11 r-I1 r-I1
s9
r-I r-I r-I

UW CSE401/501m-25sp

S ;.= aABe

43




UW CSE401/501m-25sp

Lookup: action[i,X] (slide 1)

e Shift (sj) — shift input token and state ( X7 ) onto the
stack (advance one token) and then transition to state J
e Reduce (r-k) — reduce using grammar production k

+ note: this can be confusing if productions and states
are both integers (common); hence Roman numerals

1. production k (A ::= f) tells us to pop 2 | #| symbols
from the stack (2* for symbol & state)

2. Then read the top state i’ from the top of stack

3. Lookup j' = goto[i’,A], push Aj" onto the stack, and

transition to ;'

44



UW CSE401/501m-25sp

Lookup: action[i,X] (slide 2)

e accept — (self explanatory)
* blank — no transition — syntax error
+ LR parsers will detect syntax errors as early as possible

+ Good parsers ought to produce useful error messages.

- Doing so requires storing error messages and (potentially) error
recovery logic in the action table

45



LR Parsing Algorithm (Explicit)

X = scanner.getToken();
while (true) {
i = stack.top();
act = action[i, X];
if(act == sj) {
stack.push(X, J);
X = scanner.getToken();
} else if (act == rk) {
(A ::= f) = production[k];

stack.pop(2*|f]); else if (act == accept) {
i = stack.top(); return;

j = goto[i, A]; } else { // blank
stack.push(A, j); throw SyntaxError;

¥ }

46



Example
LR Table Parse

accept

—>@—>@ (I) S :=aABe
b A— Ab (II) A ::= Abc
Stack Input l l ) (III) A==b
$1 abbcde$ @ @ (IV) B :=d
$132 bbcdes Au=b o Bu=d
action goto
$1a2ba bcdes State a b ¢ d e $|A B S
$1a2A3 bcde$ 0 acc
$1a2A3b6 cde$ 1 |[s2 go
$1a2A3b6c7  |de$ 2 s4 g3
3 S6 S5 g8
$1a2A3 de$ 4 |l e=moem e e e
$1a2A3d5 e$ 5 [V IV IV IV IV IV
$1a2A3B8 e$ 6 s/
7 L I | I o | R o | I S | I e ||
$1a2A3B8e9 $ 3 <9
$1S0 % 9 1 [ (S I I B

S
a
(D2

UW CSE401/501m-25sp

e
—>@ S ;= aABe

ar




Do We Need the Goto Table?

Why can’t the reduce
action just jump

immediately to here?

48



555555555555555555

This is why we need
to record states on
the stack



555555555555555555

Do We Need the Goto Table?

Ok, but why do we
need the goto table if
there’s only one place




UW CSE401/501m-25sp

Do We Need the Goto Table?

Once reset, we only
know where to go
given the nonterminal

Both reductions can
reset to state 5 or 3

51



UW CSE401/501m-25sp

LR Parsing Recap

“Bottom-up” Parsing — [ep]:=[expr + expr]
- - v
match right-hand sides

A
Doing this while scanning |

left-to-right produces a a|lb|blc d e
“frontier” (i.e. the stack) == t

Deciding when to shift vs. ;

reduce can be decided via OO >PO=Q ra

a DFA that recognizes valid é}
prefixes A:=b B:=d

. State a b caCtiond e $ A gOBto S
This DFA can be encoded : N
into an LR table : ; i

r-I1Vv r-I1V r-IV r-IV r-IV r-1V
s7
r-II r-II r-II pr-II pr-II r-II
s9
r-I r-I r-1 r-1 r-I r-I

W 00 NOUTL D WN PP

52




Outline

LR States

53



LR States & ltems

e Basic ldea — each state encodes

UW CSE401/501m-25sp

+ The set of productions that we might be in the middle
of matching against

+ Where exactly we are in the middle of each such
potential match (see below)

e Realization of the Idea — “Sets of ltems”

+ An item is a production with a dot in its right-hand side

+ e.g. the production A ::= XY has 3 items

A

. XY

A:=X.Y

54

A

= XY.




000000000000000000

DFA with ltems for £) &= adBe
(I1) A ::= Abc
@ (II1) A= b
S.$ accept (V) B o= d
@2l
/.S$ @ e@
~ l§-— 4ABe S =aAB.e—{S ::= aABe.




Outline

Shift-Reduce & Reduce-Reduce Conflicts

56



UW CSE401/501m-25sp

Problems with Grammars

* Previous grammar/DFA was LR(0)

e |f the grammar is not LR (of specified variant) then we will
encounter problems when constructing an LR parser

+ Shift-Reduce Conflicts
+ Reduce-reduce Conflicts

* Both conflicts are situations where two (or more) different
actions are called for

 Note: an unambiguous grammar may still have conflicts

+ however, conflict-free grammars are unambiguous

57



UW CSE401/501m-25sp

Shift-Reduce Conflicts

* These happen when both a shift and a reduce are
possible at a given point in the parse (equivalently: in a
particular state of the DFA)

* A classic example: the “ambiguous else” problem
+ S:=ifthenS|ifthenSelse S

58



UW CSE401/501m-25sp

Example: Shift-Reduce Conflict

@

@
©,
@

S ::=.ifthen §
S ;= .ifthen S else §
ifthenl
S ::=ifthen . S
S :=ifthen . S else S
s
S :=ifthen § .
S :=ifthen § . else §
elsel
S :=ifthen S else . §

Grammar
(I) S:=ifthen §
(II) S ::=ifthen S else §

T State 3 has a shift-reduce
conflict

+ Could shift past else
(j into state 4 (s4)

+ or could reduce (r-1)
S ::=1ifthen §

note: other items are not included
59 in states 2-4 to save space



UW CSE401/501m-25sp

Solving Shift-Reduce Conflicts

e Option 1 — Fix the grammar

+ Done in the Java reference grammar and in many
others

e Option 2 — Use a parser generator that has a longest
match heuristic to systematically resolve shift-reduce
conflicts in favor of shift over reduce

+ This does the right thing for the if-else case

+ QGuidelines — make sure to check that this behavior is

what you want if you’re going to rely on it. Still not
ideal to rely on this behavior.

60



UW CSE401/501m-25sp

Reduce-Reduce Conflicts

* Problem: two different reductions are possible from a
given state

e Contrived Example @ g = g
() A\ =A A= x
Iy S:=B8B B = .x
(i A ::=x xl

@ Ai=xXx

(V) B = x B .=

e State 2 has a reduce-reduce conflict (r-1l vs. r-1V)

61



UW CSE401/501m-25sp

Solving Reduce-Reduce Conflicts

* These normally indicate a serious problem with the
grammar

e Fixes

+ Use a different kind of parser generator that takes
lookahead information into account when constructing
the states

* Main generator tools (YACC, Bison, CUP, etc.) do this

+ Fix the grammar

62



UW CSE401/501m-25sp

A Real Reduce-Reduce Conflict

e Suppose the grammar tries to separate arithmetic and
boolean expressions, but still use variables

expr ::= aexpr | bexpr
aexpr ::= aexpr * aident | aident
bexpr ::= bexpr && bident | bident
ardent ::= 1d
bident ::= id
* This will create a reduce-reduce conflict state with at
least the items { aident ::=id ., bident ::=id . }

63



UW CSE401/501m-25sp

Covering Grammars

e One solution — Merge aident and bident into a single
non-terminal (e.g. use id everywhere in place of these)

expr ::= aexpr *x id | bexpr && id | id
aexpr ::= aexpr * id | id
bexpr ::= bexpr && id | id
* Thisis a covering grammar

+ May generate some strings that are not generated by
the original grammar; or less than ideal parse trees

+ Filter out / disambiguate programs at a later stage (e.qg.
determine type of each id encountered)

64



UW CSE401/501m-25sp

Next Time...

e Constructing LR Tables

+ We’ll do a simple version of LR(0) in lecture, and then
talk about extending it to LR(1), relation to SLR and
LALR as used in most parser generators — basic ideas
are very similar across all variants

e After that — LL parsers and recursive descent

e Continue reading chapter 3 to prepare for parsing this
week (3.4 & 3.5) (3.6 is optional)

65



