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Lecture D:

LR Parsing

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein



Administrivia

e HW1 due last night
+ 1-2 late days? don’t blow all your late days now!
e Project
+ Scanner due Thursday; but TEST infrastructure now

+ DO NOT start on the parser yet — just edit the token classes
in the .cup file (and small edits to build)

+ Almost everyone paired up; please, please respond if you're
not paired

e HW2 (LR Parsing & Grammars) — due in 2 weeks; will post when
we get enough background done (prob. Monday)

e Room for Sections next week is moved to Savery 131 (if you
show up to SAV 166, there is a notice that redirects you)
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Administrivia (Monday)

* Project

+ Scanner due Thursday; please also complete the
Gradescope step (reason: experiment to try to reflect all
numeric grades in gradescope this year)

e HW2 (LR Parsing & Grammars) — will wait till Wed.

e Room for Sections this week is Savery 131 (if you show
up to SAV 166, there is a notice that redirects you)
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LR Parsing
Automating Parsing
Table-driven Parsers

LR States
Shift-Reduce & Reduce-Reduce Conflicts



Outline

LR Parsing



UW CSE401/501m-25sp

Bottom-Up Parsing

e Easy to get all the different directions mixed up
+ read the input — left-to-right not right-to-left
+ derivation order — will produce a rightmost derivation

+ “bottom-up” — will match the right-hand side of
productions, not the left-hand side non-terminal

e Keyidea — whenever we match a complete right-hand-side
pattern of a production, we can replace that series of tokens
with the left-hand-side non-terminal, e.g.

Top-Down Bottom-Up

\/ \/
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LR(1) Parsing

e We'll look at LR(1) parsers

+ Left-to-right scan of input, Rightmost derivation,
1 symbol lookahead

+ Almost all practical programming languages have an
LR(1) grammar

* LALR(1), SLR(1), etc. — subsets of LR(1)

+ LALR(1) can parse most real programming languages.
tables are more compact and is used by YACC /
Bison / CUP / etc.
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Analyzing the Example

This is called the
Frontier of the parse  Two Kinds of Steps

A

a b bIc d e

We haven’t

This is the current >

position of the Scanner tokens yet
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S .:=aABe
A= Abc | b
B :=d

f‘ Reduce — the frontier moves up
‘ Q\Shift — the frontier moves right

scannhed these



Recording the Parse | s:=a5

Frontier

$ | abbcde$
$a|bbcde$
$ab|bcde$
$aA|bcde$
$aAb | cde$
$aAbc |de$
$aA|de$
$aAd|e$
$aAB|e$
$aABe|$
$5|$

Action

Shift
Shift
Reduce
Shift
Shift
Reduce
Shift
Reduce
Shift
Reduce
Accept

'= aABe
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A= Abc | b
B:=d

In Reverse
S

= ., aABe
= ., aAde
= ., aAbcde
= .5, abbcde

a rightmost derivation



UW CSE401/501m-25sp

LR Parsing in Greek

* The bottom-up parser reconstructs the rightmost
derivation, in reverse

e (Consider the rightmost derivation of our input seq. w
+ 5 =m :Bl =m :BZ =m " =rm :Bn—l = m :Bn =W
+ The parser discovers each step in reverse, I.e.

ﬂl’l—l =>rm /Bn then ﬂn—z =>1‘m /Bn_l, etc.
e Parsing terminates when

+ [, isreduced to § (start symbol, success), or

+ no match can be found (syntax error)
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How Do We Parse With This?

* Given what we’ve already seen and the next input symbol
(the lookahead) decide what to do

+ Shift — Ask the scanner for another token

+ Reduce — Perform a reduction (inverse derivation step)

e Canreducevia dAw =__ affiw when

+ w € 2* (the rest of the sentence is terminal)

- note: guaranteed by left-to-right scan
+ A ::= fis avalid production

* This is the formal justification for shift-reduce parsing
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Terminology (Useful?)

* You will see books and sources refer to the strings of
symbols in a derivation as sentential forms

+ This is just a fancy word for sentence, which is just a
string of symbols)

+ In a rightmost derivation, right-sentential form

* The site (location) of a reduction is called a handle

+ A handle is a pair of a production and integer telling us
which substring to reduce using that production

+ i.e. for reduction/production step aAw =__ afiw, the

handle is (A ::= f, k) where k is the length of af}
(i.e. right-index convention; some books use left)
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Handles: Examples

$ | abbcde$
$a|bbcde$
$EIE|| bcde$
$aA|bcde$
$aAb | cde$

$dAbc|| des

$aA|de$

Shift
Shift
Reduce
Shift
Shift
Reduce
Shift
Reduce
Shift
Reduce
Accept

24
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= [2ABe
:I'Hl a@

= . d4Abcde

= m aIEIacde
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Implementing LR Parsers
A

a | b bIc d e

e State — Data Structures
+ a stack of symbols — representing the frontier
+ a stream of unread terminals — i.e. the scanner

e A function that uses (a) the state (i.e. stack) and (b) one-
symbol lookahead to decide what action to take (e.g. to
shift, or to reduce using which production)
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Shift-Reduce Parser Actions

e Shift —Push the next symbol onto the stack and get the
next token from the scanner

 Reduce — Using production A ::= /3, pop f from the top
of the stack and push A in its place

e Accept — The stack contains only S. Announce success

 Error — Syntax error discovered

26



UW CSE401/501m-25sp

Early Errors? S = aABe
A= Abc | b
* Naively, if we can’t reduce, B-—d

we can always shift.

So, how will we get stuck (and thus error)?

e Consider the sentence dadbabe (aka. hotpop)

+ How long do we need to read input before we can
report an error? Why?

* Prefixes — consider valid first terminal symbols

+ S = aABe, so a is the only valid first character

+ Valid second character?
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Outline

Automating Parsing
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Definition: Viable Prefixes

* (most useful) a viable prefix is a sentence that can occur
as the contents of the stack during LR parsing

e (with more terminology, but less greek) a viable prefix is
a prefix of a right-sentential form that does not continue
past the rightmost handle of that sentential form

e (with greek) the sentence y is a viable prefix if there
exists some derivation S =* aAw = _ afwandyis a
prefix of aff
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How Do We Automat/e! LR Parsing?
d

o |et’s exploit viable prefixes

+ Fact — The set of viable prefixes of a CFG is a
regular language

e |dea 1: Construct a DFA to recognize viable prefixes
+ This will help us with errors for sure, but what else?

e |dea 2: The DFA that recognizes viable prefixes can also
recognize whether the top of the stack (right of the prefix)
is reducible (is a “handle”)

+ Thus, we can use a DFA to tell us when to reduce
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Step
Magically Produce a DFA



DFA for Prefixes of

S .:=aABe
A= Abc | b
accept br=d
@ @ S ::= aABe
S




Trace Using DFA

$|ab
$a|b
$ab |
$aA |
$aAb

bcde$
bcde$
bcde$

bcde$
| cde$

$aAbc |de$
$aA|de$

$aAd

|e$

$aAB|e$
$aABe|$

$51%

accept
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S :=aABe
A= Abc | b
B :=d

l 3(3) - waoe
—>@ e G O

33
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Observations

 Way too much backtracking

+ We want the parser to run in time proportional to the
ength of the input

 Where did this DFA come from anyway?

+ From the underlying grammar

+ We'll defer construction details for now
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Avoiding DFA Rescanning

e Observations

+ There’s no need to restart the DFA after a shift

+ After a reduction, the stack is the same except a new
non-terminal replaces the top k symbols symbols

* Thus, scanning the stack will largely repeat the same,
already taken transitions.

* We can record state numbers on the stack to help us
back up to the correct state after performing a reduce
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Alt. Stack Encoding  [s=aane
A= Abc | b
B:=d

accept

<::> S ;= aABe
original stack encodin
9 ; l@#

$aAb|cde$

What state are we in? ‘&b B J

What sequence of Two alternate encodings
states did we traverse? of the stack

<> : @ A @ b $1236
@ $1a2A3b6 |
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Alternate Stacks in General

e QOriginal Stack — sentence of terminals & non-terminals
e New stack — an interleaved sequence of symbols and

state identifiers
+ $S0X1S1X2S2. . 'ann |

o State s, is the start state of the DFA

o If shift transitions in the DFA via f) s, then we push Xs

onto the stack. Thus, the stack is the DFA trace.

e When we reduce, the new top of the stack tells us which
state to back up to

37



Outline

Table-driven Parsers
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Analyzing DFA Actions | s:= a5

A= Abc | b
Transitions on terminals B e
must be shift actions accept

&)
If we're at a production @ = @lS::z aABe)
labeled node, AND no D ~T B :
shift actions apply, then @-A,@l (&) @'A = Abg)

we should reduce

Note: Roman numerals 'A@)' 19” (I) S ::=aABe

to track productions T v | (D A= Abe
(IIT) A:==1b

pop production RHS (V) B e d

from stack, push the
nonterminal LHS and
the next state

39
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Encoding the DFA in a Table

e One row for each state of the DFA

 Two groups of columns

+ action table — one column per terminal symbol; tells
us which action to take

+ goto table — one column per non-terminal symbol;
helps us make correct state transitions after a reduce.
We’ll see how in a second (slightly counter-intuitive)
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Example
LR Parse Table

action goto
State a b C d e $ A B S
%)
1
2
3
4
Z (I) S ::=aABe
5 (II) A ::= Abc
8 (I]I) A:x=0b
9 (IV) B ==d

41
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S ;.= aABe

Example

I
LR Parse Table o
A ::= Abc)
(II)
action goto

State a b C d e $ A B S

%) acc

1

2

3

4

Z (I) S ::=aABe

7 (]I) A = AbC

8 (IIT) A:==b

0 (IV) B =:=d

42




Example
LR Parse Table

action
State 3 5 c . o g
%) acc
S2
s4
S6 S5

r-IIT r-III r-III

r-1v. r-IV. r-1IV
s/

r-II r-II r-I1

O o0 N O UL B WINBR

r-I r-I r-I

r-III r-III r-III
r-IV r-IV r-IV

r-11 r-I1 r-I1
s9
r-I r-I r-I

UW CSE401/501m-25sp

S ;.= aABe

43
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Lookup: action[i,X] (slide 1)

e Shift (sj) — shift input token and state ( X7 ) onto the
stack (advance one token) and then transition to state J
e Reduce (r-k) — reduce using grammar production k

+ note: this can be confusing if productions and states
are both integers (common); hence Roman numerals

1. production k (A ::= f) tells us to pop 2 | #| symbols
from the stack (2* for symbol & state)

2. Then read the top state i’ from the top of stack

3. Lookup j' = goto[i’,A], push Aj" onto the stack, and

transition to ;'
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Lookup: action[i,X] (slide 2)

e accept — (self explanatory)
* blank — no transition — syntax error
+ LR parsers will detect syntax errors as early as possible

+ Good parsers ought to produce useful error messages.

- Doing so requires storing error messages and (potentially) error
recovery logic in the action table
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LR Parsing Algorithm (Explicit)

X = scanner.getToken();
while (true) {
i = stack.top();
act = action[i, X];
if(act == sj) {
stack.push(X, J);
X = scanner.getToken();
} else if (act == rk) {
(A ::= f) = production[k];

stack.pop(2*|f]); else if (act == accept) {
i = stack.top(); return;

j = goto[i, A]; } else { // blank
stack.push(A, j); throw SyntaxError;

¥ }
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Example
LR Table Parse

accept

—>@—>@ (I) S :=aABe
b A— Ab (II) A ::= Abc
Stack Input l l ) (III) A==b
$1 abbcde$ @ @ (IV) B :=d
$132 bbcdes Au=b o Bu=d
action goto
$1a2ba bcdes State a b ¢ d e $|A B S
$1a2A3 bcde$ 0 acc
$1a2A3b6 cde$ 1 |[s2 go
$1a2A3b6c7  |de$ 2 s4 g3
3 S6 S5 g8
$1a2A3 de$ 4 |l e=moem e e e
$1a2A3d5 e$ 5 [V IV IV IV IV IV
$1a2A3B8 e$ 6 s/
7 L I | I o | R o | I S | I e ||
$1a2A3B8e9 $ 3 <9
$1S0 % 9 1 [ (S I I B

S
a
(D2

UW CSE401/501m-25sp

e
—>@ S ;= aABe

ar




Do We Need the Goto Table?

Why can’t the reduce
action just jump

immediately to here?
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This is why we need
to record states on
the stack
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Do We Need the Goto Table?

Ok, but why do we
need the goto table if
there’s only one place
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Do We Need the Goto Table?

Once reset, we only
know where to go
given the nonterminal

Both reductions can
reset to state 5 or 3

51



UW CSE401/501m-25sp

LR Parsing Recap

“Bottom-up” Parsing — [ep]:=[expr + expr]
- - v
match right-hand sides

A
Doing this while scanning |

left-to-right produces a a|lb|blc d e
“frontier” (i.e. the stack) == t

Deciding when to shift vs. ;

reduce can be decided via OO >PO=Q ra

a DFA that recognizes valid é}
prefixes A:=b B:=d

. State a b caCtiond e $ A gOBto S
This DFA can be encoded : N
into an LR table : ; i

r-I1Vv r-I1V r-IV r-IV r-IV r-1V
s7
r-II r-II r-II pr-II pr-II r-II
s9
r-I r-I r-1 r-1 r-I r-I

W 00 NOUTL D WN PP
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Outline

LR States
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LR States & ltems

e Basic ldea — each state encodes

UW CSE401/501m-25sp

+ The set of productions that we might be in the middle
of matching against

+ Where exactly we are in the middle of each such
potential match (see below)

e Realization of the Idea — “Sets of ltems”

+ An item is a production with a dot in its right-hand side

+ e.g. the production A ::= XY has 3 items

A

. XY

A:=X.Y

54
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= XY.




000000000000000000

DFA with ltems for £) &= adBe
(I1) A ::= Abc
@ (II1) A= b
S.$ accept (V) B o= d
@2l
/.S$ @ e@
~ l§-— 4ABe S =aAB.e—{S ::= aABe.




Outline

Shift-Reduce & Reduce-Reduce Conflicts
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Problems with Grammars

* Previous grammar/DFA was LR(0)

e |f the grammar is not LR (of specified variant) then we will
encounter problems when constructing an LR parser

+ Shift-Reduce Conflicts
+ Reduce-reduce Conflicts

* Both conflicts are situations where two (or more) different
actions are called for

 Note: an unambiguous grammar may still have conflicts

+ however, conflict-free grammars are unambiguous
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Shift-Reduce Conflicts

* These happen when both a shift and a reduce are
possible at a given point in the parse (equivalently: in a
particular state of the DFA)

* A classic example: the “ambiguous else” problem
+ S:=ifthenS|ifthenSelse S
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Example: Shift-Reduce Conflict

@

@
©,
@

S ::=.ifthen §
S ;= .ifthen S else §
ifthenl
S ::=ifthen . S
S :=ifthen . S else S
s
S :=ifthen § .
S :=ifthen § . else §
elsel
S :=ifthen S else . §

Grammar
(I) S:=ifthen §
(II) S ::=ifthen S else §

T State 3 has a shift-reduce
conflict

+ Could shift past else
(j into state 4 (s4)

+ or could reduce (r-1)
S ::=1ifthen §

note: other items are not included
59 in states 2-4 to save space
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Solving Shift-Reduce Conflicts

e Option 1 — Fix the grammar

+ Done in the Java reference grammar and in many
others

e Option 2 — Use a parser generator that has a longest
match heuristic to systematically resolve shift-reduce
conflicts in favor of shift over reduce

+ This does the right thing for the if-else case

+ QGuidelines — make sure to check that this behavior is

what you want if you’re going to rely on it. Still not
ideal to rely on this behavior.
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Reduce-Reduce Conflicts

* Problem: two different reductions are possible from a
given state

e Contrived Example @ g = g
() A\ =A A= x
Iy S:=B8B B = .x
(i A ::=x xl

@ Ai=xXx

(V) B = x B .=

e State 2 has a reduce-reduce conflict (r-1l vs. r-1V)
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Solving Reduce-Reduce Conflicts

* These normally indicate a serious problem with the
grammar

e Fixes

+ Use a different kind of parser generator that takes
lookahead information into account when constructing
the states

* Main generator tools (YACC, Bison, CUP, etc.) do this

+ Fix the grammar
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A Real Reduce-Reduce Conflict

e Suppose the grammar tries to separate arithmetic and
boolean expressions, but still use variables

expr ::= aexpr | bexpr
aexpr ::= aexpr * aident | aident
bexpr ::= bexpr && bident | bident
ardent ::= 1d
bident ::= id
* This will create a reduce-reduce conflict state with at
least the items { aident ::=id ., bident ::=id . }
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Covering Grammars

e One solution — Merge aident and bident into a single
non-terminal (e.g. use id everywhere in place of these)

expr ::= aexpr *x id | bexpr && id | id
aexpr ::= aexpr * id | id
bexpr ::= bexpr && id | id
* Thisis a covering grammar

+ May generate some strings that are not generated by
the original grammar; or less than ideal parse trees

+ Filter out / disambiguate programs at a later stage (e.qg.
determine type of each id encountered)
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Next Time...

e Constructing LR Tables

+ We’ll do a simple version of LR(0) in lecture, and then
talk about extending it to LR(1), relation to SLR and
LALR as used in most parser generators — basic ideas
are very similar across all variants

e After that — LL parsers and recursive descent

e Continue reading chapter 3 to prepare for parsing this
week (3.4 & 3.5) (3.6 is optional)
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