Lecture C:

Parsing & Context-
Free Grammars

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

UW CSE401/501m-25sp

Administrivia

* Reminders
+ Project partner signup (due Tuesday night)
- Who's still looking for a partner
+ HW1 (due Thursday night)

- *vs. * similarly, please avoid messy \e\s\c\a\p\e\s
— this is why I’ve been using * underlining to

distinguish concrete characters. Please add a short
comment to help your grader

- (Re-)read the notes at the top of the homework when
you think you're “done” &

UW CSE401/501m-25sp

Administrivia (Wednesday)

 Partner Signups — Done?

+ | will make an Ed post once the starter repositories are
set up later today

e Reminder: HW1 (due Thursday night)
e Section Thu — Very Important for Project Setup!

+ If using Intellid make sure to read the README,
BEFORE you open up the project in the IDE. This will
save you a lot of headache

 Reading: This lecture (3.1-3.2), Next lecture (3.4)

UW CSE401/501m-25sp

Outline

Parsing Overview
Context-Free Grammars
Ambiguous Grammars

SSSSSSSSSSSSSSSSSS

Outline

Parsing Overview

UW CSE401/501m-25sp

Parsing™ - ~

Token Parser Syntax

* |nput: token stream Stream Tree

e Qutput: abstract syntax tree
 Abstract Syntax Tree (AST)
+ captures the grammatical structure of a program

+ primary data structure for the rest of the front-end
* Plan
+ Study how context-free grammars specify syntax

+ Study algorithms for parsing & building ASTs

*btw, if you ever see someone say syntactic analysis,
5 they mean (scanning &) parsing

UW CSE401/501m-25sp

Concrete vs. Abstract Syntax

 The full (concrete) parse tree contains all of the derivation
details. The Abstract Syntax Tree (AST) omits information

that is necessary to parse the input, but not needed for
later processing

°* e.g.
Concrete Syntax Abstract Syntax
expr +
exlpr exl,or id:a int: 1
id int
| |

a + 1

UW CSE401/501m-25sp

Context Free Grammars

* The syntax of most programming languages can be
specified by a context-free grammar (CFG)

 CFGs are more expressive than regular expressions but
less so than general grammars — in a sweet spot

+ powerful enough to describe nesting and recursion

+ but unlike general grammars, CFG-membership is
decidable. (very efficiently with minor restrictions)

* Not perfect

+ Cannot capture every constraint we want to impose to
define valid programs, such as typing

+ Can be ambiguous

UW CSE401/501m-25sp

Derivations & Parse Trees

 Derivation — (generation) a sequence of expansion
steps, beginning with a start symbol and leading to a
sequence of terminals (a.k.a. tokens)

e Parsing — (recognition + output) the inverse to the
process of derivation

+ Starting with a sequence of terminals, we want to
recover (discover, really) the non-terminals and
structure, i.e. the parse tree (a.k.a. concrete syntax
tree).

LML CCEA0d /50 2500

program ::= statement | program statement
O I d Exal I I p I e statement ::= assignStmt | ifStmt
assignStmt ;1= id = expr ;
Grammar ifStmt := if (expr) statement
expr :=1id | int | expr + expr
Parse Tree roaram idu=alblclifjlk|n|x|y|z
preg int:=0|1/2]3(4]5/6]7[8|9
tatement
program stateme ~_
pd ifStmt
statelm ent statement
|
assignStmt assignStmt
expr expr
String id int id int
of | | | |

| [
Tokens @ = 1 3 if (a +1) b =2 ;

UW CSE401/501m-25sp

The Parsing Problem

e (Input) Let G be a grammar

e (Input) Let w be a sentence (i.e. string of tokens)
e (Output) Then

+ Decide whether or not w € L(G)

+ If so, traverse the parse tree of w in some standard
order and do something useful at each node

- The tree might not be produced explicitly, but the
control flow of the parser will correspond to a
traversal.

11

UW CSE401/501m-25sp

Standard Order

* For practical reasons we want the parser to be
deterministic (no backtracking), and we want to examine
the source program from left to right.

+ |.e. parse the program in linear time in the order it
appears in the source file

12

program UW CSE401/501m-25sp

Common Orders = ™

* Top-down m
I

|
+ Start with the root a=1;

+ Traverse the parse tree depth-first, and left-to-right
(aka. a left-most derivation)

+ LL(k), recursive-descent
 Bottom-up
+ Start at leaves and build up to the root
o Effectively a right-most derivation in reverse(!)
+ LR(k) and subsets (LALR(k), SLR(k), etc.)

13

UW CSE401/501m-25sp

Something Useful

e At each point (node) in the traversal, perform some
semantic action, e.qg.

+ Construct nodes of full parse tree (rare)
+ Construct abstract syntax tree (AST) (common)

+ Construct linear, lower-level representation (usually
done in a second pass after constructing AST)

+ Generate target code on the fly
- used to be done in 1-pass compilers

- (Gilbert’s opinion) don’t write 1-pass compilers

14

Outline

Context-Free Grammars

15

UW CSE401/501m-25sp

Context-Free Grammars

e A grammar G consists of
+ N — afinite set of non-terminal symbols
+ 2 — afinite set of terminal symbols (aka. alphabet)
+ P — afinite set of productions

- a production is of the form a ::= f3,
wherea € Nand ff € (NU X)*

+ S — the start symbol, a distinguished element of N

- If not otherwise specified, this is usually assumed to
be the left-hand non-terminal a of the first production

16

UW CSE401/501m-25sp

Example: CFG

exrpr .= exrpr + exrpr Productions
4 o)
exrpr — expr ELPT ..— EXPT EXPT,
ELPTr = ETPTr — €EXTPT,

ETPT * ETPT

expr 1= eTpr * exrpr,
expr | expr p_) expra=eupr / expr,
int) expr :=int,int =0,
int:=0[1]2|3|4 int = 1,int 1= 2,int 1= 3,

int =4, int = 5,int ::= 06,

| 516[7]8]9 it =7t =8, int =:=9

\
Non-terminal symbols

. Terminal symbols
N = {expr,int} d

L —|_7 _7*7 /7
Start symbol 2= { 07 17 273747 57 67 77879 }
S = expr

17

UW CSE401/501m-25sp

Meta-Syntax vs. Concrete

exrpr :i= expr + expr Productions
4 L)
expr — expr exrpr i= exrpr -+ expr,
expr i= expr — expr,

expPr * expr

eTPr 1= expr * erpr,
expr | expr p_) expru=eapr / expr,
int) expr :=int,int ::= 0,
R (N A S int = 1,int .= 2,int := 3,

int =4, int = 5,int ::= 06,

| 5]617]819

_int = Tant =8 int =

Non-terminal symbols
: Terminal symbols
N = {expr,int} Y

Start symbol 2= T
art symbo 1 0,1,2,3,4,5,6,7,8,9
S = expr

18

UW CSE401/501m-25sp

The Derivation Relation

e One step-derivation
+ leta,f,ye (NUX)*,andd €N

+ If 0 ::= [is a production, then ady = afy, which we read
as “from ady we derive afy“

e \We say that a sequence of “sentences”
Ay, A,y ..., A, € (VU 2)* is a derivation when
a0$a1$ *ee :>an

+ We write @ =* f# when there is a derivation of f from a

e Useful: if w € 2* is a sentence of only terminal symbols,
then w is “terminal” (i.e. there is no a such that w =)

Note: = * is the transitive, reﬂe>1<j9ve closure of = but it’s not necessary to know this

UW CSE401/501m-25sp

Example: Derivation of 2 + 3 *4

sentence

expr

‘expr + expr

int

expr

+ expr

2 +|expr* expr]

D 4

-* expr

) 4

_3>x<

production used

exXpr .= expr + expr
expr .= int

int ;=2

expr .= expr * expr
expr ;.= int, int ::= 3
expr .:=1nt, int .:=4

20

parse tree

expr

UW CSE401/501m-25sp

Left- and Right-Most Derivations

* The preceding derivation relation doesn’t impose order

e Leta,f,y € (NU X)* be sentences of any symbols,
but let w € 2* be a sentence of only terminal symbols

o If0 ::= f, then woy =, wpy (derives leftmost)

e If0 ::= pf,then adw =, apw (derives rightmost)

 We will only be interested in left-most and right-most
derivations, not arbitrary orderings

21

UW CSE401/501m-25sp

Example: Rightmost Derivation

sentence production used parse tree
expr
‘expr + expr‘ expr .= expr + expr i

expr +‘expr * expr‘ expr .= expr * expr xer expr

expr + expr * expr ;.= int, int ::=4

EXpr +>I< 4 expr ;= int, int .:= 3 it‘wt
+3*4 expr :=1int,int::=2 2 + 3 * 4

22

Example: L vs. R (one slide)

Leftmost Rightmost

expr expr

‘expr + expr ‘expr + expr‘

.+ expr expr ——‘expr * expr‘

+ expr expr + expr *
‘2 +‘expr expr‘ expr +

2 +|3[* expr 2+ 3 * 4

2 +3#4]

Observe: Everything to the left/right of
the derivation step is a terminal

23

UW CSE401/501m-25sp

From Grammars to Languages

e LetG = (N,2, P,S) be agrammar

e For every nonterminal A € N, define the language
associated with that non-terminal to be

LA)={weX*|A=>%w]
+ i.e. the language of all (terminal) sentences that derive
from A
e Since S is the initial symbol of G, define L(G) = L(9)

+ Again, the non-terminal on the left of the first
production rule is taken to be the start symbol if no

other start symbol is specified.

24

UW CSE401/501m-25sp

Example: Useless Productions

EXPr = expr + expr | |] Question 1 — Is
exTpr — expr L(G) =L(G)?
ETPT * €xPr
expr | expr G Question 2 — Does the
int (G’ non-terminal foo occur
int :==01]2]3|4 In any derivation using
5167|819 grammar G’ ?

foo ::= expr | 6 | 42 Question 3 — Why

would we ever write a
grammar like G’ ?

25

UW CSE401/501m-25sp

Reduced Grammars

e A grammar G is reduced iff. every production a ::= [in
(5 is used in some derivation
S =>* aay = afy =>*w
+ In other words, every production is useful
* Convention: we will only use reduced grammars

+ There are algorithms for pruning useless productions
from grammars — see a formal language or compiler
book for details

26

Outline

Ambiguous Grammars

27

UW CSE401/501m-25sp

Another Derivation of 2 + 3 ¥4

sentence production used parse tree
expr
‘expr *expr ‘ expr .:= expr ™ expr expr

expr

‘expr + expr‘* expr expr .= expr + expr expr
+ expr *expr expr :i=int, int .::= 2 expr/>pr
2 +>I< expr expr .= int, int ::= 3 ir|)t int
2+3>I< expr .:=int, int ;:= 4 ‘2 + 3 x4

28

Two Derivations of 2 + 3 * 4

expr expr

“2 4 (3% 4)”

29

UW CSE401/501m-25sp

(Un)Ambiguous Grammars

e A Grammar G is unambiguous iff every w € L(G) has a
unique left-most (or right-most) derivation

+ (theorem) a sentence w € L(G) has a unique left-most
derivation iff. it has a unigue right-most derivation

A grammar without this property is ambiguous

+ But other grammars that generate the same language
might be unambiguous — ambiguity is a property of
grammars, not languages

* We need unambiguous grammars in order to ensure that
parsing is a deterministic process

30

UW CSE401/501m-25sp

Two Derivations of 5 + 6 + 7

expr expr

31

UW CSE401/501m-25sp

What’s Going on Here?

* The grammar has no notion of precedence
+ e.g.interpretingas 2+(3"4) vs.(2+3)*4
* The grammar has no notion of associativity
+ e.g.interpretingas 5+ (6 +7)vs.(5+6) + 7
e Traditional solution
+ Create a non-terminal for each level of precedence

+ Force the parser to recognize higher-precedence
subexpressions first

+ Use left or right recursion in the grammar for left or right
associativity of operators

32

UW CSE401/501m-25sp

Classic Expression Grammar
(first used in ALGOL 60)

expr ::= expr + term | expr — term | term
term ::= term x factor | term / factor | factor
factor ::==int | (expr)

int==0]1[2[3[4[5[6|7[8]9

33

UW CSE401/501m-25sp

Check: Derive 2 + 3 *4

expr ::= expr + term | expr — term | term
term ::= term x factor | term / factor | factor
expr factor ::=int | (expr)
/\ int:=0|1[2]3[4]|5|6|7]8]9
expr term
/\ Key observation:
term term factor

| The separation of non-
factor factor terminals (expr/term/
| | factor as opposed to
int int int expr alone) enforces

| | | precedence

2+ 3 x4

34

UW CSE401/501m-25sp

Check: Derive 5 + 6 + 7

expr

expr ::= expr + term | expr — term | term
/ \ term ::= term * factor | term | factor | factor
expr term | factor = int | (expr)
/\ int:=0]1]2|3[4]5[6|7|8]9
expr term
Key observation:
term factor factor The choice of whether
the rules for expr/term/
factor factor are left vs. right-
| recursive (left-recursive
int int int here) controls the
| | | associativity
5 + 6 - T

35

UW CSE401/501m-25sp

Check: Derive 5 + (6 + 7)

expr ::= expr + term | expr — term | term
term ::= term x factor | term / factor | factor
factor ::=int | (expr)

int:=0[1|2[3|4]5|6|7|8]9

(left as an exercise)

36

UW CSE401/501m-25sp

Another Classic Example

e (Grammar for conditional statements

stmt ;= 1if (cond) stmt

| if (cond) stmt else stmt

+ (this is the dangling else problem found in many, many
grammars for languages, beginning with ALGOL 60)

 Exercise: show that this is ambiguous

+ How do we do this?

37

One Derivation

stmt

UW CSE401/501m-25sp

stmt ;= 1if (cond) stmt

| if (cond) stmt else stmit

if (

stmt
el

if (cond,)

cond,)

stmt,
se
stmt,

if (cond,) if (cond,) stmt, else stmt,

38

Another Derivation

stmt

stmt

UW CSE401/501m-25sp

stmt ;= 1if (cond) stmt

| if (cond) stmt else stmit

if (

else

if (cond,)

stmt,

cond,)

stmt,

if (cond,) if (cond,) stmt, else stmt,

39

UW CSE401/501m-25sp

Removing the “if” Ambiguity

* Fix the grammar so that the “if-then” and “if-then-else”
productions proceed from distinct non-terminals

+ Similar to precedence fix for operators, but more subtle

+ This is done in the Java reference grammar;
downside: results in more non-terminals

* OR change the language (if you’re designing it)
+ e.g. require a delimiter — if (cond) stmt end

* OR use some ad-hoc rule in the parser (not great)

+ “else matches closest unpaired if”

40

UW CSE401/501m-25sp

Use Grammatical Precedence (1)

Original, Ambiguous Grammar

stmt .= ...

if (

if (cond) stmt else stmt

cond) stmt

Modified, Unambiguous Grammar

another else is

not allowed in
these positions

stmt ::

stmt ::

= other stmt

| if (cond) stmt

| if (cond) with_else else stmt

= other stmt

| if (cond) with else else with else

other stmt ::= ...

41

UW CSE401/501m-25sp

Check T

| if (cond) stmt
| if (cond) with_else else stmt

stmt ::= other stmt

| if (cond) with else else with else

stmt

other stmt 1= ...

(exercise &)

if (cond,) if (cond,) stmt, else stmt,

42

UW CSE401/501m-25sp

Change Language Design (2)

e |f you can (re-)design the language, you can just avoid
this problem entirely

stmt ::

| if (cond) stmt end
|

if (cond) stmt else stmt end

* Pros: unambiguous formally, and for mere humans

e Alternate: In Rust and Swift, {stmt} braces are required

e Cons: requires programmers to type additional syntax

+ Debatable whether it’s better in this case

43

UW CSE401/501m-25sp

Parser Tools: Operators

e Most parser tools can cope with ambiguous grammars
+ Makes life simpler — if used with discipline
e Usually can specify precedence & associativity

+ Allows simpler, ambiguous grammar with fewer
nonterminals as basis for parser — let the tool handle
the details (but only when it makes sense)

o (i.e. expr ::= expr + expr | expr * expr | ... with assoc. &
precedence declarations is often the best solution)

e Take advantage of this to simplify the grammar when using
parser-generator tools

+ We will do this in our compiler project

44

UW CSE401/501m-25sp

Parser Tools: Ambiguity

* Possible rules for resolving other problems

+ Earlier productions in the grammar preferred to later
ones (danger here if parser input changes)

+ Longest match used if there is a choice (good solution
for dangling ifs and a few similar things)

* Parser tools normally allow for this
+ BUT is it really the behavior you want?

+ Now your language’s behavior depends on arbitrary
choices in the specification of your parser generator
tool... (what happens if tool behavior changes?)

45

UW CSE401/501m-25sp

Next Time...

LR Parsing
+ Continue reading Chapter 3 (3.1-3.2 if not already)

+ It’s OK to SKIP top-down parsing (3.3) for now and go
immediately to LR/bottom-up parsing (3.4)

e Sections on Thursday

+ Most important section to attend!

46

