SSSSSSSSSSSSSSSSSS

Lecture B:

Languages, Automata,
Regular Expressions &
Scanners

CSE401/501m:

Introduction to Compiler Construction
Instructor: Gilbert Bernstein

Administrivia

e Read: textbook Ch 1,2.1-2.4
e First homework out Thursday
+ Written problems on regexs/DFAs
+ We'll cover almost everything needed this week
+ Submit HW 1 on Gradescope
e Find a project partner if you haven’t already
+ Be sure you agree on how you plan to share the work

+ We posted a form for ONE of you to send in partner info
(Worth 1 point for both of you if done right) See calendar on
webpage. Due by next Tuesday.

e Office hours have been posted on the calendar!

2

UW CSE401/501m-25sp

Administrivia (Friday)

e Read: textbook Ch 2.5
e First homework should be out

* Reminder: Project Partners are due next Tuesday

Outline

Review of Formal Languages, Grammars

Lexical Specification of Prog. Lang.
Regular Expressions

Finite Automata — Recognize Reg. Exp.

Scanners & Tokens

UW CSE401/501m-25sp

Outline

Review of Formal Languages, Grammars

UW CSE401/501m-25sp

Programming Language
Specifications

* Since the 1960s, the syntax of every significant
programming language has been specified by a formal
grammar

+ First done in 1959 using BNF (Backus-Naur Form);
used to specify ALGOL 60 syntax

+ Borrowed from the Linguistics community (Chomsky)

*ALGOL 60 was adopted as the house style
for pseudo-code algorithms published in
CACM, the pre-eminent publication in
Computer Science (Communications of the
Association for Computing Machinery)

UW CSE401/501m-25sp

Formal Languages & Automata
Theory (a review on one slide)

e Alphabet — a finite set of symbols and characters

e String — a finite, possibly empty sequence of symbols from an
alphabet

e Language — a set of strings (possibly empty or infinite)
* An infinite language can be specified finitely

+ Automaton — arecognizer; a machine that accepts an input
string if it is in the language (otherwise, rejects it)

+ Grammar — a generator; a system for producing all strings in the
language (and no other strings)

e A particular language may be specified by many different grammars
and automata

e A grammar or automaton specifies only one language
7

UW CSE401/501m-25sp

Language (Chomsky) Hierarchy

Quick Reminder

* Regular languages are specified by K Tgring-(iogllplite \
regular expressions/grammars and (Computable) Languages

finite automata (FSAs) N
/ Context-Sensitive \
+ Specs & implementations of Languages
scanners
* Context-free languages are specified f f::;ﬁ’;;:;ee \
by context-free grammars and
pushdown automata (PDAs) Regular \
Languages

+ Specs & implementations of parsers

» Context-sensitive languages... aren’t
too important (for us)

* Recursively-enumerable languages \ J
are specified by general grammars k J
and Turing machines \K Jj

UW CSE401/501m-25sp

Example

Grammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::=1d = expr ;

ifStmt = if (expr) statement

expr ::=1id | int | expr + expr
Wdi=alblc|i|]jlk|n|x|y|z
int :=01]1(2[3(4[|5(6[(7]8]9

Exercise

Derive a simple program

UW CSE401/501m-25sp

program

statement :
assignStmt :
ifStmt :

expr :

id

it

::= statement | program statement
= assignStmt | ifStmt

= 1id = expr ;

= 1if (expr) statement

:=1id | int | expr + expr

n=al|blcliljlklnlx|ylz

Exercise

Derive a simple program

program

program

e

statement

assignStmt

expr
|
int

UW CSE401/501m-25sp

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt 1= id = expr ;
ifStmt := if (expr) statement

expr ::=1id | int | expr + expr
id:=al|blcliljlklnlx]|y]|z
int:=0[1]2|3[4[5[6[7|8]|9

statement
~
ifStmt

statement

assignStmt

expr
|
int

UW CSE401/501m-25sp

u
Productions program = statement | program statcment

statement ::= assignStmt | ifStmt

assignStmt 1= id = expr ;

ifStmt := if (expr) statement
* The rules of a grammar are expr = id | int | expr + expr

called productions idi:=al|b|c|iljlkln|x|ylz

I mt :=01112(31|4 6789
e Rules contain int:==0[112[3[4|5|6|7|8]9

+ non-terminal symbols — the variables of the grammar (e.qg.
program, statement, id, etc.)

+ terminal symbols — concrete syntax that appears in programs (e.g.

 The meaning of a production is that in a derivation a non-terminal
(occurring on the left-hand-side of the production) may be replaced by
the sequence of terminals and non-terminals occurring to the right. (we
just saw this)

e There is often a choice (e.g. assignStmt | ifStmt) of which rule to expand
with. Thus, grammar derivations are non-deterministic in general.

12

UW CSE401/501m-25sp

Alternative Notations

for productions

* There are several notations for productions in common
use; all mean the same thing

ifStmt = if (expr) statement

ifStmt :=if (expr) statement

ifStmt — if (expr) statement
(ifStmt) :=if (<expr>) (statement)

 Note: concrete syntax (keywords/tokens like if) as
opposed to meta syntax (variables like expr)

* AND there is meta-meta-syntax

13

UW CSE401/501m-25sp

Recognizing Levels of Notation

* Note the difference between concrete syntax (keywords/
tokens like if) as opposed to meta syntax (variables like

expr)
+ e.qg. ifExpr ::= if (expr) statement
e Like with learning algebra, you learn to read structure

+ eqg.3 +|4 . xll—ly . 28I
I

* One can even specify the general syntax of productions!

+ l.e. o u=
T

; meta syntax

14

UW CSE401/501m-25sp

Parsing

 Parsing is the process of reconstructing the derivation
(syntactic structure) of some source program (i.e. string)

* In principle a single recognizer could work directly from a
concrete, character-by-character grammar

* |n practice, this is (almost) never done

15

UW CSE401/501m-25sp

Parsing & Scanning

* In real compilers, the recognizer is split in two phases
+ Scanner — translate input characters to tokens

* also report lexical errors like illegal characters and
illegal symbols; skip past things with no semantic
meaning Iin the language, like comments and
whitespace (in most languages)

+ Parser — read token stream and reconstruct the

derivation
N\ N\
(Source ‘ ‘ \
Token Syntax
Code |Scanner Parser
Stream Tree

k(strings)

16

UW CSE401/501m-25sp

Why Separate the Scanner & Parser?

o Simplicity & Separation of Concerns

+ Scanner hides details from parser (comments,
whitespace, input files, etc.)

+ Parser becomes easier to build; has simpler input
stream (tokens) and simpler interface for input

e Efficiency

+ Scanner recognizes regular expressions — proper
subset of context free grammars

e but still consumes a surprising amount of the total
execution time — e.g. suppose input file has 10,000
characters, but only 1,000 post-scan tokens

17

UW CSE401/501m-25sp

But...

* Not always possible to separate cleanly
e e.9. C/C++/Java type vs. identifier

+ Parser would like to know which names are types vs.
identifiers, but...

+ Scanner does not know how things are declared
 So we hack around it somehow

+ Either use simpler grammar and disambiguate later, or
communicate between scanner & parser

+ Engineering issue — try to keep interfaces as simple &
clean as possible

18

Outline

Lexical Specification of Prog. Lang.
Regular Expressions

19

UW CSE401/501m-25sp

Scanner Example

* |nput text

// this statement does very little
if (x >=y) y = 42;

* Token Stream | |F | | LPAREN | | ID(x) | | GEQ | | ID(y)

RPAREN | | ID(y) | | BECOMES | | INT(42) | | SCOLON

+ Note: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most
languages — counterexamples include Python
indenting, Ruby and JavaScript newlines)

* Token objects sometimes carry associated data (e.qg.
numeric value or variable name)
20

UW CSE401/501m-25sp

Typical Tokens in Prog. Lang.

e Operators & Punctuation
teg +-*/(C){}Y[1 z:<x

+ each is a distinct lexical class

e Keywords

+ e.g. if while for goto return switch void ...

+ each is a distinct lexical class (not a string)
e |dentifiers

+ A single ID lexical class, but parameterized by actual id string
e Integer constants

+ A single INT lexical class, but parameterized by int value
e Other constants, etc.

21

UW CSE401/501m-25sp

Principle of Longest Match

* In most languages, the scanner should pick the longest
possible string as the next token if there is a choice

e Example
return maybe != iffy;

should be recognized as 5 tokens

RETURN || ID(maybe) || NEQ || ID(iffy) || SCOLON

l.e. !=1s one token, not two; iffyis an ID, not IF
followed by ID(fy)

22

UW CSE401/501m-25sp

Lexical Complications

e Most modern languages are free-form
+ layout doesn’t matter
+ whitespace separates tokens

e Alternatives / Variations
+ Fortran — line oriented

+ Haskell, Python — indentation and layout implies
grouping
+ Ruby, Javascript — newlines can end statements
* And other confusions

+ C++, Java — is >> a shift operator or the closing of two
nested templates/generics?

Outline

Lexical Specification of Prog. Lang.
Regular Expressions

24

UW CSE401/501m-25sp

Regular Expressions and FAs

* The lexical grammar (structure) of most programming
languages can be specified with regular expressions

(ok, maybe a little cheating is needed)

* Tokens can be recognized by a deterministic finite
automaton

+ The automaton can either be table-driven (generated
from a specification) or hand-written, based on a lexical
grammar (i.e. a regular expression)

25

UW CSE401/501m-25sp

Regular Expressions

e Defined over some alphabet X

+ For programming languages, this alphabet is usually
ASCII or Unicode

« Aside — recall that 22 is the set of all strings (potentially
empty) with characters from the alphabet 2

e If ais a regular expression, then L(a) is the language (set
of strings; i.e. subset of 2.*) generated by «

26

UW CSE401/501m-25sp

Primitive REs

a L(a) Notes

C {c} Singleton set, for each c in 2
€ le} Empty string

%) {} Empty language

27

UW CSE401/501m-25sp

Operations on REs

o L(a) Notes

af | (515215 € L), 5, € L(P)) |
Concatenation

alp L(a) U L(p)

Combination (union)

a* {s;+s, | s, € L(a), n > 0}

O or more occurrences
(Kleene closure)

e precedence: * (highest), concatenation, | (lowest)

e parentheses can be used to group REs as needed

e On computer need a way to escape * and | (don’t worry on paper)

28

UW CSE401/501m-25sp

Examples

Reg. Exp. Meaning
+ single + character
! single ! character
= single = character
| = 2 character sequence !=
Xyzzy 5 character sequence xyzzy
(1|0)* 0 or more binary digits (i.e. seq of 9s, 1s)
(1|0)(1|9)* | 1 or more binary digits (i.e. seq of @s, 1s)
0|1(1]0)* sequence of binary digits with no leading

@s, except for 0 by itself

29

UW CSE401/501m-25sp

Abbreviations

* The basic operations generate all possible regular
expression, but there are common abbreviations used for
convenience. Some examples:

Abbr. Meaning Notes
a+ aa’™ 1 or more occurrences
a? (ale€) 0 or 1 occurrences
[a-Z] (alb|...|2) 1 character in given range
[abxyZ] (a|b|x|y|z) 1 of the given characters

30

More Examples

Reg. Exp. Meaning

[abc |+

[abc]*

[0-9]+

[1-9][@-9]*

[a-zA-Z][a-zA-Z0-9]*

31

UW CSE401/501m-25sp

More Examples

Reg. Exp. Meaning
[abc |+ sequence of 1 or more as, bs, cs
[abc]* sequence of 0 or more as, bs, ¢S
[0-9]+ sequence of 1 or more decimal digits
[1-9][0@-97* sequence of 1 or more decimal digits

(without a leading 0)

[a-zA-Z][a-zA-Z0-9]*

|dentifiers in your
Favorite CProgmmming Language”‘"

32

UW CSE401/501m-25sp

Abbreviations

* Many systems allow abbreviations to make writing and
reading definitions or specifications easier

name .=«

+ Key restriction! Definitions must not be circular
(recursive) directly or indirectly (otherwise the resulting
language might not be regular)

33

UW CSE401/501m-25sp

Example

* Possible syntax for numeric constants
digit ::= |0 — 9|
digits ::= digit+
number = digits (. digits)?(|eE|(+|-)? digits)?
e How would you describe this set in English?

 \What are some examples of legal constants (strings)
generated by number ?

+ What are the differences between these and numeric
constants in YFPL?
(Your Favorite Programming Language)

34

Outline

Finite Automata — Recognize Reg. Exp.

35

UW CSE401/501m-25sp

Recognizing regular languages

* Finite automata can be used to recognize strings
generated by regular expressions

e Can write by hand or generate automatically

+ Reasonably straightforward, and can be done
systematically

+ Tools like Lex, Flex, JFlex (etc.) do this automatically,
given a set of regular expressions

+ Same technique used in grep, sed, text editors, other
regular expression packages/tools

36

UW CSE401/501m-25sp

Finite State Automaton (FSA)

A review on one slide

» A finite set of states (§)
+ One marked as initial state (;)
+ One or more marked as final states (F C §)

A set of transitions from state to state

+ equivalently, a function that outputs the set of possible next states starting from
a current state and input character (formally 0 : (X X .S) = ZA(S))

+ often depicted as a set of 2-labeled graph edges
e Operate by reading input symbols/characters and transitioning to some valid state

+ When drawing graphs, can include e-labeled transition edges, that can be taken
without consuming an input character

Accept if (for some execution) when there is no more input, the state is final

+ More involved in a scanner because (1) there are multiple kinds of final state (i.e.
tokens) and (2) we accept the longest prefix of the input that is accepted

* Reject if (1) no transition possible, or (2) no more input and not in a final state (DFA)

+ Some versions (including textbook) have an explicit “error” state; transition to it
when no other transition possible; better to omit/special-case this for CSE 401

37

Example: FSA for “cat”

~OO0OM0

UW CSE401/501m-25sp

DFA vs. NFA (determinism, or not?)

 Deterministic Finite Automata (DFA)

+ At most one state (0(a,)) the FA can transition to on a
given input from a given state (zero states if “error”)

+ No e-labeled edges allowed in graph representation
* Non-deterministic Finite Automata (NFA)

+ There is some input and state on which the FA can transition
to more than one state; i.e. there are non-deterministic
choices

+ Accept if there is some seq. of choices reaching a final state
+ Reject if all possible choices fail to reach a final state

+ When simulating, this requires guessing and backtracking

39

DFA vs. NFA example

(alb)*|(b|c)*

ol
NFA C @Db’c

UW CSE401/501m-25sp

Building DFAs from REs

 We want DFAs for speed (no backtracking or guessing)

* But conversion from REs to NFAs is much simpler (e.g.
the example on the last slide)

e Qur approach will be RE — NFA — DFA

+ The second step of NFA — DFA will be done by
something called the “subset construction”

41

UW CSE401/501m-25sp

RE — NFA (Recursion)

* Recall that a regular expression is either
+ c, ¢ (base cases)

+ aff, a|f, a* (recursive/inductive cases)

e Structural Induction

+ Most code/algorithms in this class will be structurally
inductive!

+ Specify how to construct an NFA for each base case

+ Specify how to construct an NFA for each inductive
case, given an NFA for each sub-expression

42

RE — NFA: base cases

RE — NFA: concatenation

e Cilopelfone

RE — NFA: union

RE — NFA: Kleene closure

Exercise: Draw the NFA
b(at|ag)|bug

Exercise: Draw the NFA
b(at|ag)|bug

gl Ng U NgE Ng

Exercise: Draw the NFA

b(at|ag)|bug
t
n0=0=0

gl Ng U NgE Ng

Exercise: Draw the NFA

b(at|ag)|bug
-O20~0
-O~0O>0

gl Ng U NgE Ng

Exercise: Draw the NFA
b(at|ag)|bug

Exercise: Draw the NFA
b(at|ag)|bug

Exercise: Draw the NFA
b(at|ag)|bug

UW CSE401/501m-25sp

*Formally
N FA —_ D FA note: not required for HW or Exams

5. X) =)8 (c.x)
e Subset Construction xeX

+ Take an input NFA /" and return a DFA

+ DFA I states correspond to subsets of the states of NFA
Sg = P(S ;) (so naively, 2" DFA states if NFA has n states)

+ (Informal*) DFA & transitions are constructed by collecting
the set of NFA states that can be reached after reading the
same input

e Algorithm that usually avoids enumerating all 2" possible states

+ example of a fixed-point computation; only add DFA states
as we discover they are reachable

+ Resulting DFA may still have more states than needed

o see textbooks for construction and minimization details

54

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA
t
OO
o tlilie =
(O—(O=>0°

b
@ —O—=C

€

€

O

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA

Exercise: (NFA — DFA)

build DFA for b(at|ag)|bug given the NFA

SSSSSSSSSSSSSSSSSS

Outline

Scanners & Tokens

62

Reminder: Scanners

fSOUI‘CG

Code

\(strings)

Scanner

~

Token

Stream

UW CSE401/501m-25sp

* |nput text
// this statement does very little
if (x >=y) y = 42;
* Token Stream | |F | | LPAREN | | ID(x) | | GEQ | | ID(y)
RPAREN ID(y) BECOMES INT(42) SCOLON

63

UW CSE401/501m-25sp

To Tokens

e A scanner is a DFA that finds the next token each time it’s
called, starting wherever it left off after the last token

* Every final state of a scanner DFA emits (returns) a token

e Tokens are units of scanner output (aka. words, lexemes)

== becomes EQUAL
(becomes LPAREN
while becomes LPAREN
xyzzy becomes ID(xyzzy)

e You choose the names for tokens

e Also, there may be additional data ... \r\n might count lines;
token data structure might include source line numbers

64

UW CSE401/501m-25sp

DFA — Scanner Code

* A couple of options
1. Implement by hand
a. Write one procedure for each state
b. Write one procedure for all states/inputs
2. Use tool to generate a table-driven scanner

a. generate table data structure and drive using code
that is parametric over the table

b. generate code that has the table structure directly
embedded in the code

65

UW CSE401/501m-25sp

DFA — Scanner Code (by hand)

a. Implement by hand using procedures
+ one procedure for each DFA state

+ each procedure reads a character, and branches on it
(using an if or switch statement)

+ best with tail-call optimization or goto statements
e Pros

+ straightforward to write

+ reasonably fast at compilation time
e Cons

+ hand-writing scanner is a lot of tedious work

+ may diverge from the lexical specification

66

UW CSE401/501m-25sp

Notes on time I w/Compilers

 What do you mean by fast?
* Many different stages of time
o Key stages: from most frequent to least frequent

> Execution Time Time to execute a compiled program

> Compilation Time Time to execute the compiler
> Time to build/compile the compiler itself
> Programmer time to write/develop the compiler

e All are important, but not equally so

 Time consumed in more frequent stages is more important

67

UW CSE401/501m-25sp

DFA — Scanner Code (by hand)

b. implement by hand using a single procedure with multiple
return points

+ reads (potentially) multiple input characters (and may
“look ahead”)

+ choices implemented with if, switch, loop control flow
* Pros

+ also straightforward to write

+ faster at compilation time
e Cons

+ still a lot of tedious work

+ still may diverge from the lexical specification

68

UW CSE401/501m-25sp

DFA — Scanner Code (generated)

a. use tool to generate a table-driven scanner
+ one row of table for each state of DFA
+ one column for each input character
+ entry in table is action to take

- next state to go to, or error, or accept + token + goto
start

e Pros

+ more concise to specify

+ easier to ensure agreement with lexical specification
e Cons

* HmagiC”

69

UW CSE401/501m-25sp

DFA — Scanner Code (generated)

b. use tool to generate a scanner program
+ transitions embedded in code, so no table lookup
+ choices use conditional statements, loops
* Pros
+ still more concise to specify
+ still more agreement with lexical specification
e Cons
+ still “magic”

* Potentially faster; depends on processor; e.g. code vs.
data cache usage tradeoffs

70

UW CSE401/501m-25sp

Example: Handwritten Scanner

e Specification — Regular expression for each token

LPAREN ::= (EOF ::= (end of file)
RPAREN i:=) LESS =<

SCOLON ::= ; LEQ = <=
NOT ::=1! INT ::= [0 —9]"
NEQ ::= != ID ::= [a-zA-Z||a-zA-Z0-9_]"

* Must merge the DFAs for all expressions into one DFA
with labeled “final” states; at least one for each token

 Whitespace and errors handled as special cases

* Disclaimer: We will do a scanner generator for the project

71

UW CSE401/501m-25sp

Example: Scanner DFA
1) Single Character Tokens

—(

whitespace or
comments

(end of file)
0
—
— W
2)

72

emit EOF

emit LPAREN

emit RPAREN

emit SCOLON

UW CSE401/501m-25sp

Example: Scanner DFA

2) Prefix ambiguity between tokens

I —
— ’@ — ’ Remember that

emit NOT emit NEQ | W©EUS°® the .
longest possible

match! Need to

< = “look ahead” to
>@ determine

. . whether to emit
emit LESS emit LEQ or not.

73

Example: Scanner DFA

3) Numeric Literals

[0-9] Q [0-9]

emit INT

%

Again, we need “look ahead” to

determine whether or not we’re
done looping

74

UW CSE401/501m-25sp

Example: Scanner DFA

4) Identifiers & Keywords
Also needs look ahead
I[a—zA—Z] ’ [a-zA-7Z20-9]

emit ID or keyword

e Strategies for disambiguating identifiers vs. keywords

+ Hand-written — before emitting an identifier, look it up
in a keyword table (classic app. of perfect hashing)

+ Generated — Let generator create a DFA with lots of
extra states (no lookup table step required)

75

UW CSE401/501m-25sp

Scanner: Hand Implementation

1) Token Representation

public class Token {

public Kind kind; // which "kind" of token?
public int intVval; // defined if kind == INT
public String id; // defined if kind == ID
public int line; // debug information

public enum Kind {
EOF, LPAREN, RPAREN, NOT, NEQ,
SCOLON, LESS, LEQ, INT, ID,
// etc.

76

UW CSE401/501m-25sp

Scanner: Hand Implementation
2) Scanner Helper Methods

public class Scanner {
public Scanner(String file contents) { .. }

// get the next input character without consuming it
public char lookahead() { .. }

// get the next input character and advance in input
public char getch() { .. }

// advance in input past any whitespace and comments
public char skipWhitespace() { .. }

7

UW CSE401/501m-25sp

Scanner: Hand Implementation

3) Start getting a token and single character tokens

public Token getToken() {
skipWhitespace();

if(/* no more input */)
return new Token(Token.Kind.EOF);

char ch = getch();

switch (ch) {
case '(': return new Token(Token.Kind.LPAREN);
case ')': return new Token(Token.Kind.RPAREN);

case ';': return new Token(Token.Kind.SCOLON);

78

UW CSE401/501m-25sp

Scanner: Hand Implementation

4) Prefix ambiguous tokens

case '!':
if(lookahead() == '=")
return new Token(Token.Kind.NEQ);
else

return new Token(Token.Kind.NOT);

case '<':
if(lookahead() == '=")
return new Token(Token.Kind.LEQ);
else

return new Token(Token.Kind.LESS);

79

UW CSE401/501m-25sp

Scanner: Hand Implementation

5) Numeric Literals

case 'Q': case 'l1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case ‘9':
String num = ch;
while(isDigit(lookahead()))
num = num + getch();

return new Token(Token.Kind.INT,
Integer.parseInt(num));

80

UW CSE401/501m-25sp

Scanner: Hand Implementation

6) Identifiers and Keywords

case 'a’': .. case 'z':
case 'A': . case ‘Z':
String id = ch;
while(isDigit(lookahead()) ||
isLetter(lookahead()) ||
lookahead() == ' ") {
id = id + getch();
}

if(/* id is a keyword */)
return new Token(kwdToken(id));
else
return new Token(Token.Kind.ID, id);

81

UW CSE401/501m-25sp

Minidava Scanner Generation

o We’'ll use the jflex tool to automatically create a scanner
from a specification file

o We'll use the CUP tool to automatically create a parser
from a specification file

* Token class definitions are shared by jflex and CUP.
Lexical classes are listed in CUP’s input file, which
generates the token class definition.

e Detalls in this week’s sections

82

UW CSE401/501m-25sp

Next Time...

e HW 1 due Thursday

* First part of compiler project released (along with starter
code) on Thursday

+ Make sure you have partner info entered

* Next Topic: Grammars & Parsing

+ We’ll do LR parsing first (since it’'s needed for the
project) and then circle back to do LL parsing

+ Good time to start reading ahead into Chapter 3

83

