
UW CSE401/501m-25sp

Lecture A:

Overview
CSE401/501m:

Introduction to Compiler Construction

Instructor: Gilbert Bernstein

1

UW CSE401/501m-25sp

Introductions
Administrivia
What’s a compiler?
Why you might want to take this course

Outline

2

UW CSE401/501m-25sp

Introductions
Administrivia
What’s a compiler?
Why you might want to take this course

Outline

3

UW CSE401/501m-25sp

• Gilbert Bernstein

• Assistant Professor 
(started Winter 2023)

• I research Programming
Languages & Computer
Graphics — especially DSLs
(Domain Specific Languages)

• I’ve written 5+ compilers from
scratch, and worked on 10+

• I even work on compilers for
knitting machines!

• This is my first time teaching an
intro compilers class (please be
understanding of any goofs)

Instructor

4

UW CSE401/501m-25sp

• TAs this quarter:

✦ Eric Chen

✦ Karen Haining

✦ Sriya Bulusu

✦ Bill Baxter

• Office Hours (Rooms TBA)

Teaching Assistants

5

Mon Tue Wed Thu Fri

11:30-12:30 1:30-2:30 11:30-12:30 - 1:30-2:30

1:00-2:00 2:30-3:30 1:00-2:00 3:30-4:30 -

UW CSE401/501m-25sp

• I hope you had a great spring break

• We’re all in this together!

✦ Please talk to us! If you’re having trouble don’t “tough it

out.” Ask us for help. If things are going well, let us know.

• In this class, we want to all hold each other to a high
standard and be kind to one another. Always assume the
best intentions in other students, staff and in yourself

• Be realistic about your workload — make sure you have the
time and energy for your commitments, academic and
otherwise.

✦ Do NOT “ghost” your partner! 👻

Welcome Back!

6

UW CSE401/501m-25sp

Introductions
Administrivia
What’s a compiler?
Why you might want to take this course

Outline

7

UW CSE401/501m-25sp

• Enhanced version of this course for 5th year BS/MS
students

• M501 students will have to do a significant addition to the
project or some other extra work if agreed with the
instructor (papers, reports, ???)

✦ more details later

• Otherwise 401 and 501m are the same (lectures,
sections, assignments, infrastructure)

CSE 501m

8

UW CSE401/501m-25sp

• Required Prerequisites

✦ CSE 332 (Data Abstractions)

• and thus CSE 311 (Foundations) i.e. language theory

✦ CSE 351 (HW/SW interface, x86_64 assembly)

• Also very useful, but not required

✦ CSE 331 (Software Design & Implementation)

✦ CSE 341 (Programming Languages)

Prerequisites

9

UW CSE401/501m-25sp

• Both are required — unique content in each

• All materials will be posted, but as aids not replacements

✦ Come to class; take notes (do better in class!)

✦ Panopto lectures are for review & unavoidable

absences only — this is research backed; positive as a
review, but not as a substitute

• Sections: additional examples & exercises, 
plus project details and tools

✦ We will have sections this week (Thu) — don’t miss!

→

Lectures & Sections

10

UW CSE401/501m-25sp

• Gadgets reduce focus while learning

✦ Bursts of Info (e.g. notifications, DMs) are addictive

✦ Heavy multitaskers have trouble focusing & shutting out

irrelevant information — research is clear here

• So, how should we deal with laptops and phones?

✦ Just say no! (unlike Panopto, no upsides)

✦ No open gadgets during class (yes, really!)

• (unless you are actually taking notes…)
✦ Urge to search? Ask a question! Everyone benefits!

✦ Pull out a piece of paper and pencil/pen instead! 📝

Screens & Gadgets

11

UW CSE401/501m-25sp

—Manuel Blum

STUDYING:
You are all computer scientists.
You know what FINITE AUTOMATA can do.
You know what TURING MACHINES can do.
For example, Finite Automata can add but not multiply.
Turing Machines can compute any computable function.
Turing machines are incredibly more powerful than Finite Automata.
Yet the only difference between a FA and a TM is that
the TM, unlike the FA, has paper and pencil.
Think about it.
It tells you something about the power of writing.
Without writing, you are reduced to a finite automaton.
With writing you have the extraordinary power of a Turing machine.

12

“

”

UW CSE401/501m-25sp

• Course website (www.cs.uw.edu/401)

• Discussion Board — Ed

✦ For almost anything related to the course

✦ Join in! Please help each other out. Staff will contribute.

✦ Use private messages for too-specific-to-post questions,

if you need to share code to ask, etc.

✦ Staff will use Ed to post announcements

• Gradescope — written assignments & regrade requests

• Email to cse401-staff[at]cs for project feedback, questions,
unexpected or personal situations, things that need a
followup, not appropriate for ed

Communications

13

http://www.cs.uw.edu/401

UW CSE401/501m-25sp

• Midterm & Final Exam

✦ Dates are on the course calendar

• Grading Breakdown*

✦ 50% project (w/partner): ½ final state, ½ intermediate

✦ 25% individual homework

✦ 10% midterm

✦ 15% final

• Deadlines: 11:59pm for everything

Requirements & Grading

14

*we reserve the right to adjust
as needed/appropriate

UW CSE401/501m-25sp

• Let’s have fun, learn, and help each other!

• BUT

✦ You must not misrepresent work done by someone (or

something) else as your own. Always attribute work!

✦ You must not attempt to bypass learning by avoiding

work, or help others do similarly

• Read the course policy on the website carefully

• Honest work is the foundation of your university work (and
in engineering, business, life). Anything less demeans your
teachers, your classmates, and ultimately yourself.

• If in doubt about whether something is ok, ask.

Academic Integrity

15

UW CSE401/501m-25sp

• The best way to learn about compilers is to build one!

✦ (ideally several!)

• You will be writing a compiler for “MiniJava”

✦ “core” parts of Java; from Appel textbook (not needed)

✦ We will generate and run x86_64 code directly

• note: this is not the same as what the JVM does

✦ Completed in 4 steps throughout the quarter

• 1. Scanner 2. Parser 3. Checking 4. Codegen

✦ Additional work for CSE 501m students. Usually, add

some interesting feature to MiniJava.

Course Project

16

UW CSE401/501m-25sp

• You should work in pairs

✦ Pick a partner now for the rest of the quarter — Partner

choices are due next Tuesday (see calendar)

• Make sure you agree on work strategy, deadline attitudes,
etc.

✦ If you are in 501m, make sure you pick a partner who is as
well. (401 501m switches are possible if it makes sense
for the specific individuals involved)

✦ Partnering remotely can work very well even without
hanging out in the labs (e.g. Zoom, VScode Live Share)

• We will set up repositories on the department Gitlab — let us
know if you haven’t used Gitlab before. Staff will retrieve your
turnins from this repository

→

Project Groups

17

UW CSE401/501m-25sp

• Cooper & Torczon. Engineering a
Compiler. 2nd or 3rd edition.

✦ The official text for this course. 2nd

edition available free online through
UW Library Safari books login. 3rd
edition recently released.

• Appel. Modern Compiler Implementation
in Java. 2nd edition. (MiniJava)

• Aho, Lam, Sethi, Ullman. “Dragon Book”

• Fischer, Cytron, LeBlanc. Crafting a
Compiler.

Textbooks

18

UW CSE401/501m-25sp

Introductions
Administrivia
What’s a compiler?
Why you might want to take this course

Outline

19

UW CSE401/501m-25sp

• The most basic definition of a programming language

1. Some way to represent a program (actions,

computations) as data

2. Some way to evaluate or interpret those programs

(i.e. to execute the actions/computations)

• This is very abstract, so let’s consider an example

What’s a Programming Language?

20

UW CSE401/501m-25sp

abstract	public	class	Expr	{}	

public	class	Num	extends	Expr	{	
				public	int	i;	
				public	Num(int	v)	{	i	=	v;	}	
}	

public	class	Add	extends	Expr	{	
				public	Expr	e0,	e1;	

				public	Add(Expr	a0,	Expr	a1)	{	
								e0	=	a0;	
								e1	=	a1;	
				}	
}

A Calculator Language

21

e.g.

7 + (42 + 1)

Add

Add

Num: 1Num: 42

Num: 7

Expr	e	=	new	Add(
				new	Num(7),	
				new	Add(new	Num(42),	
													new	Num(1)));

UW CSE401/501m-25sp

abstract	public	class	Expr	{	
				public	abstract	int	eval();	
}	

public	class	Num	extends	Expr	{	…	
				public	abstract	int	eval()	{	
								return	i;	
				}	
}	

public	class	Add	extends	Expr	{	…	
				public	abstract	int	eval()	{	
								return	e0.eval()	+	e1.eval();	
				}	
}

A Calculator Language

22

UW CSE401/501m-25sp

abstract	public	class	Expr	{	
				public	abstract	int	eval();	
}	

public	class	Num	extends	Expr	{	…	
				public	abstract	int	eval()	{	
								return	i;	
				}	
}	

public	class	Add	extends	Expr	{	…	
				public	abstract	int	eval()	{	
								return	e0.eval()	+	e1.eval();	
				}	
}

A Calculator Language

23

System.out.println(e.eval());

Expr	e	=	new	Add(
				new	Num(7),	
				new	Add(new	Num(42),	
													new	Num(1)));

50

UW CSE401/501m-25sp

• Where’s the language?

1. Objects represent expressions as trees

2. eval() method interprets trees by adding things up

• Objections, i.e. arguments this isn’t a language

1. The calculator language isn’t useful for anything!

2. This is just Java code.

3. eval() just returns a number; a real language should

generate an executable program file

Expr	e	=	new	Add(
				new	Num(7),	
				new	Add(new	Num(42),	
													new	Num(1)));

Nice Trick

24

UW CSE401/501m-25sp

• We could make this slightly more useful by adding
variables and changing the signature of eval() to specify
input values for those variables

• What about if we added to the representation?

✦ Assignments? Loops? Classes? (Each another node)

✦ Couldn’t we represent all of Java this way?

Objection #1: Utility

25

Interpretation
eval()

Representation
Expression

Trees

UW CSE401/501m-25sp

Interpret

Objection #2: Input is Java!

26

Code
Trees

Assign

Add

Num: xNum: 42

Var: y

Stmt	s	=	new	Assign(
				new	Var("y"),	
				new	Add(new	Num(42),	
													new	Var("x")));

UW CSE401/501m-25sp

Interpret

Objection #2: Input is Java!

27

Code
TreesTranslate

Source
Code

(strings)

Assign

Add

Num: xNum: 42

Var: y

…	
y	=	42	+	x;	
…

UW CSE401/501m-25sp

Objection #3: No Exec. Output

28

InterpretCode
TreesTranslate

Source
Code

(strings)

…	
y	=	42	+	x;	
…

Assign

Add

Var: xNum: 42

Var: y

UW CSE401/501m-25sp

Objection #3: No Exec. Output

29

Interpret Binary
CodeTranslateCode

TreesTranslate
Source
Code

(strings)

…	
y	=	42	+	x;	
…

Assign

Add

Var: xNum: 42

Var: y

movq	-8(%rbp),%rax	
addq	$42,%rax	
movq	%rax,-16(%rbp)

UW CSE401/501m-25sp

Binary
CodeTranslate

• A Compiler is a program that translates code from one
representation into code in a different representation

• Every compiler is actually made up of a bunch of smaller
compilers, each of which we call a compiler pass

• In between the passes are intermediate representations
(aka. IRs)

This is a Compiler

30

Code
TreesTranslate

Source
Code

(strings)

UW CSE401/501m-25sp

Binary
Code

Back
End

• Traditionally Compilers are divided into a front end and a
back end, each made up of more passes & IRs

• The front end is responsible for ingesting programs and
deciding whether or not they are allowed/safe

• The back end is responsible for optimizing programs,
managing/planning resource use, and generating code

Front End vs. Back End

31

Code
Trees

Front
End

Source
Code

(strings)

UW CSE401/501m-25sp

• Scan: Break the input file
into a sequence of tokens

• Parse that sequence into
a tree

• Check the code using
additional rules/analyses
(types and semantics)

A Basic Front End

32

Types +
Symbol
Tables

CheckerSyntax
TreeParserToken

StreamScanner
Source
Code

(strings)

All Strings

Lexically valid

Grammatically valid

Well-Typed,
100% valid programs

UW CSE401/501m-25sp

• A lot more stuff going on

• Major parts (first-to-last & most-to-least complicated)

✦ Target-independent optimization

✦ Target-specific optimization

✦ Code generation

Back Ends

33

UW CSE401/501m-25sp

targetlibinfo	
tti	
no-aa	
tbaa	
scoped-noalias	
assumption-	
		cache-tracker	
basicaa	
ipsccp	
globalopt	
deadargelim	
domtree	
instcombine	
simplifycfg	
basiccg	
prune-eh	
inline-cost	
inline	
functionattrs	
domtree	
sroa	
early-cse	
lazy-value-info	
jump-threading	
correlated-	
		propagation	
simplifycfg	
domtree	
instcombine

LLVM -O2 optimization passes

34

tailcallelim	
simplifycfg	
reassociate	
domtree	
loops	
loop-simplify	
lcssa	
loop-rotate	
licm	
loop-unswitch	
instcombine	
scalar-evolution	
loop-simplify	
lcssa	
indvars	
loop-idiom	
loop-deletion	
loop-unroll	
mldst-motion	
domtree	
memdep	
gvn	
memdep	
memcpyopt	
sccp	
domtree	
bdce	
instcombine	
lazy-value-info

jump-threading	
correlated-
propagation	
domtree	
memdep	
dse	
loops	
loop-simplify	
lcssa	
licm	
adce	
simplifycfg	
domtree	
instcombine	
barrier	
float2int	
domtree	
loops	
loop-simplify	
lcssa	
loop-rotate	
branch-prob	
block-freq	
scalar-evolution	
loop-accesses	
loop-vectorize	
instcombine	
scalar-evolution	
slp-vectorizer

simplifycfg	
domtree	
instcombine	
loops	
loop-simplify	
lcssa	
scalar-evolution	
loop-unroll	
instcombine	
loop-simplify	
lcssa	
licm	
scalar-evolution	
alignment-from-	
		assumptions	
strip-dead-	
		prototypes	
elim-avail-	
		extern	
globaldce	
constmerge	
verify

* The exact list of passes
used depends on the

version and flags supplied

104 Passes

This is all
target-

independent
optimization

only

UW CSE401/501m-25sp

• A lot more stuff going on

• Major parts (first-to-last & most-to-least complicated)

✦ Target-independent optimization

✦ Target-specific optimization

✦ Code generation

Back Ends

35

Covered in Lecture.
May be on Final.

Part of Project

UW CSE401/501m-25sp

Introductions
Administrivia
What’s a compiler?
Why you might want to take this course

Outline

36

UW CSE401/501m-25sp

• Before you learned CS, your
computer was run by the army
of gremlins inside it.

Demystify the Computing Stack

37 image: Gremlins movie

UW CSE401/501m-25sp

• Before you learned CS, your
computer was run by the army
of gremlins inside it.

• Intro courses demystified
programming

Demystify the Computing Stack

38

Application Programs

UW CSE401/501m-25sp

• Before you learned CS, your
computer was run by the army
of gremlins inside it.

• Intro courses demystified
programming

• CSE 351 demystified the HW/
SW interface

Demystify the Computing Stack

39

Application Programs

HW/SW Interface
(e.g. Instruction Set

Architecture)

UW CSE401/501m-25sp

• Before you learned CS, your
computer was run by the army
of gremlins inside it.

• Intro courses demystified
programming

• CSE 351 demystified the HW/
SW interface

• BUT, those classes didn’t
demystify how high-level code
turns into low-level code

Demystify the Computing Stack

40

Application Programs

HW/SW Interface
(e.g. Instruction Set

Architecture)

Compiler!

UW CSE401/501m-25sp

• Before you learned CS, your
computer was run by the army
of gremlins inside it.

• Intro courses demystified
programming

• CSE 351 demystified the HW/
SW interface

• BUT, those classes didn’t
demystify how high-level code
turns into low-level code

Demystify the Computing Stack

41

Application Programs

HW/SW Interface
(e.g. Instruction Set

Architecture)

Compiler!

“The real problem is that
programmers have spent far too
much time worrying about efficiency
in the wrong places and at the wrong
times; premature optimization is
the root of all evil (or at least most
of it) in programming.”

— Donald Knuth, in the Art of Computer Programming

UW CSE401/501m-25sp

• A lot of other systems are (sometimes secretly) compilers

✦ HCI - GUI Toolkits, Document Languages (pdf, TeX, etc)

✦ Graphics - Shader languages, CUDA

✦ Networking - Software-defined networks

✦ Web - frameworks, HTML templates, the browser

✦ ML/AI & Datascience - Tensorflow, PyTorch, Matlab

✦ Databases - SQL, data analytics

✦ Hardware - VHDL/Verilog

✦ Computer Algebra Systems - Mathematica, SAGE

Compilers as Prototype System

42

UW CSE401/501m-25sp

• You might work on a big, serious 
compiler project one day. 
Many graduates from this class have!

• But, you will write simple parsers 
and interpreters for “little languages”

✦ command languages, config files, XML, JSON, network

protocols, semi-structured data, web templating, …

• If you enjoy working with compilers, there are many jobs
available

✦ ML/AI systems, data science/analytics, GPU

programming, …

YOU will eventually write a Compiler!

43

UW CSE401/501m-25sp

• Theory — grammars, DFAs, PDAs,
pattern matching, fixed-points

• Algorithms — graphs, dynamic
programming, approximation, graph
coloring

• Systems — allocation, scheduling,
naming, synchronization, locality

• Architecture — instruction sets,
pipelining, memory hierarchy

• Engineering — tradeoffs, large
complex code bases, advanced
testing

The Grand Tour!

44

ok, a grand tour of
computer science, not of

the solar system

image: NASA

UW CSE401/501m-25sp

Questions?

45

UW CSE401/501m-25sp

• Monday — This Lecture video

• Wednesday — Hal Perkins guest lectures

✦ on Regular Expressions

✦ start reading ch. 1, 2.1-2.4 (entire book available

through Safari Online!)

• Thursday — Sections as normal

✦ review of Regular Expressions and HW1 released

• Friday — Gilbert back; lecture in person as normal

✦ second half of regular-expressions/lexing

Week 1

46

UW CSE401/501m-25sp

• Familiarize yourself with the course website

• Read the syllabus and academic integrity policy

• Find a partner!

✦ (and you get to meet other people 😀)

• Show up to lecture in person on Wednesday, Friday;
Lectures on Thursday

Before next class…

47

UW CSE401/501m-25sp

• An incomplete list of sources and ancestors of this course

✦ UW CSE 401 (Chambers, Snyder, Notkin, Perkins,

Ringenburg, Henry, …)

✦ UW CSE PMP 582/501 (Perkins & others)

✦ Rice CS 412 (Cooper, Kennedy, Torczon)

✦ Cornell CS 412-3 (Teitelbaum, Perkins)

✦ Many books (Appel; Cooper/Torczon; Aho, [[Lam,]

Sethi,] Ullman [Dragon Book]; Fischer, [Cytron,]
LeBlanc; Muchnick, …)

• Attributions will be on a best effort basis…

Course Credits

48

