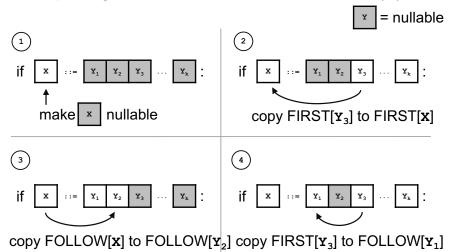
CSE 401 - LL Parsing and FIRST/FOLLOW/nullable Worksheet - Week 4

1. Compute the FIRST, FOLLOW, and nullable sets for each non-terminal in the following grammar:

A ::= x C B y B ::= z | ϵ C ::= y | B x

Non-Terminal	FIRST	FOLLOW	nullable
A			
В			
С			


2. For each of the following grammars, identify whether or not the grammar satisfies the LL(1) condition. If the grammar is not LL(1), explain the problem. *Hint*: Although you are not required to follow the formal algorithm, you may find it helpful to examine the grammar in terms of the FIRST, FOLLOW, and nullable sets.

a) X ::= a Y | Z Y ::= a | C Z ::= b Y b) P ::= d R
R ::= o | S
S ::= g | o g

c) J ::= a K L $\text{K ::= c } \mid \ \epsilon \\ \text{L ::= c}$

d) J ::= a K L K ::= c | ε L ::= b

Computing FIRST, FOLLOW, & nullable (3)

Computing FIRST, FOLLOW, and nullable

repeat for each production $X := Y_1 \ Y_2 \dots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k = 0) set nullable[X] = true for each i from 1 to k and each j from i+1 to k if $Y_1 \dots Y_{i-1}$ are all nullable (or if i = 1) add FIRST[Y_i] to FIRST[X] if $Y_{i+1} \dots Y_k$ are all nullable (or if i = k) add FOLLOW[X] to FOLLOW[Y_i] if $Y_{i+1} \dots Y_{j-1}$ are all nullable (or if i+1=j) add FIRST[Y_j] to FOLLOW[Y_i] Until FIRST, FOLLOW, and nullable do not change

Canonical FIRST & FIRST FOLLOW conflicts & their solutions:

FIRST Conflict:

Both productions of A have α in their FIRST sets 0. A ::= $\alpha\beta \mid \alpha\gamma$

Solution:

Factor out the prefix (α) 0. A ::= α Tail 1. Tail ::= $\beta \mid \gamma$

FIRST FOLLOW Conflict:

B is nullable, α in FIRST & FOLLOW 0. A ::= B α 1. B ::= $\alpha \mid \epsilon$

Solution:

Substitute B into A 0. A ::= $\alpha\alpha \mid \alpha$ Factor out the prefix (α) 0. A ::= α Tail 1. Tail ::= $\alpha \mid \epsilon$