
Section 4: CUP & LL
CSE 401/M501

Adapted from Autumn 2022



Administrivia

• Homework 2 is due tonight!
- You have late days if you need them (2 max)

• Parser is due one week from today
- Be sure to check your Scanner feedback – out later this week

• HW3 is out tomorrow, due in 1.5 weeks on Monday April 29th 
• Only one late day allowed on this assignment so we can distribute 

solutions before the midterm at the end of that week.
• More on hw3 in sections next week, but start before then if you can
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Parser Live Demo

A video recording of this demo will be posted on the 
website as a supplement
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Language Hierarchies



The CUP parser generator
• Uses LALR(1)

– A little weaker (less selective), but many fewer states than LR(1) parsers

– Handles most realistic programming language grammars

– More selective than SLR (or LR(0)) about when to do reductions, so works for 
more languages



The CUP parser generator

• LALR(1) parser generator based on YACC and Bison

• CUP can resolve some ambiguities itself
– Precedence for reduce/reduce conflicts

– Associativity for shift/reduce conflicts

– Useful for our project for things like arithmetic expressions (use exp+exp, 
exp*exp, etc. for fewer non-terminals, then add precedence and associativity 
declarations). Read the CUP docs!
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LL Parsing

A-10
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if X ::= Y1 Y2 Y3 ... Yk

Y = nullable

:

if X ::= Y1 Y2 Y3 ... Yk :

if X ::= Y1 Y2 Y3 ... Yk :

if X ::= Y1 Y2 Y3 ... Yk :

make nullable X copy FIRST[Y3] to FIRST[X] 

copy FOLLOW[X] to FOLLOW[Y2] copy FIRST[Y3] to FOLLOW[Y1] 

1 2

3 4

Computing FIRST, FOLLOW, & nullable (3)



repeat
 for each production X := Y1 Y2 … Yk
  if Y1 … Yk are all nullable (or if k = 0)
     set nullable[X] = true
  for each i  from 1 to k and each j  from i +1 to k
     if Y1 … Yi-1 are all nullable (or if i = 1)
   add FIRST[Yi ] to FIRST[X]
     if Yi+1 … Yk are all nullable (or if i = k )
   add FOLLOW[X] to FOLLOW[Yi]
     if Yi+1 … Yj-1 are all nullable (or if i+1=j)
   add FIRST[Yj] to FOLLOW[Yi]
Until FIRST, FOLLOW, and nullable do not change

Computing FIRST, FOLLOW, and nullable



L  L  (k)

Left-to-Right
Only takes one pass, 

performed from the left

Leftmost
At each point, finds the 

derivation for the leftmost 
handle (top-down)

k Terminal 
Lookahead

Must determine derivation 
from the next unparsed 

terminal in the string
Typically k = 1, just like LR



• LL(k) scans left-to-right, builds leftmost derivation, 
and looks ahead k symbols

• The LL condition enable the parser to choose 
productions correctly with 1 symbol of look-ahead

• We can often transform a grammar to satisfy this if 
needed

LL(k) parsing



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

LL(1) parsing: An example top-down derivation of “a z x” 

z xa 

Lookahead Remaining



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

z xa 

Lookahead Remaining

S

B

a



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz 

Lookahead Remaining

S

B

a           x   

C



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz 

Lookahead Remaining

S

B

a            z            x  

C



0. S ::= a B 
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

x 

Lookahead Remaining

S

B

a            z            x 

C



0. S ::= a B 
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”
S

B

a            z            x 

C

Successful parse!



For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

 

– If it is nullable, the FIRST sets of its productions must be disjoint from 
its FOLLOW set

**We can often transform a grammar to satisfy this if needed

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

LL Condition



0. A ::= αβ | αγ

Canonical FIRST Conflict

Problem

The FIRST sets of the right-hand sides for 
the SAME NON-TERMINAL must be disjoint!



Let’s try a top-down derivation of αβ

βα

Lookahead Remaining

A

βα

A

γα

OR

0. A ::= αβ | αγ



Let’s try a top-down derivation of αβ

A

βα

A

γα

WHICH 
ONE?

0. A ::= αβ | αγ

We don’t know!

We are using an LL(1) 
parser, we can’t see 

more than α!



Canonical FIRST Conflict Solution

0. A ::= α Tail
1. Tail ::= β | γ

Solution

0. A ::= αβ | αγ
Factor out the 
common prefix

When multiple productions of a nonterminal share a common prefix, turn the different suffixes 
into a new nonterminal.



Top-Down Derivation of “αβ”

βα

Lookahead Remaining

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail



Top-Down Derivation of “αβ”

β

Lookahead Remaining

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

β



Top-Down Derivation of “αβ”

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

β

Successful parse!



0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Changing original grammar a little (Grammar 1)

z xa 

Lookahead Remaining



0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

What’s the issue?

There’s a FIRST Conflict! 



0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”: LL(1) can’t parse

z xa 

Lookahead Remaining

S

B

a

S

w

a

OR



0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Parse Tree without changing Grammar

S

B

a           z          x 

C



Applying the Fix: Factor out the Common Prefix

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z



Top-Down Derivation of “a z x”

z xa 

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z



Top-Down Derivation of “a z x”

xz 

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B



Top-Down Derivation of “a z x”

xz 

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C



Top-Down Derivation of “a z x”

xz 

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

x



Top-Down Derivation of “a z x”

xz 

Lookahead Remaining

S

Tail

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

a           z x  



Top-Down Derivation of “a z x”

x

Lookahead Remaining

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

S

Tail

B

C

a           z x 



Top-Down Derivation of “a z x”
S

Tail

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

a           z x 

Success!



Comparing Parse Trees
S

Tail

a           z            x  

C

B Purple trees 
are the same!

S

B

a           z          x 

C



For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

 

– If it is nullable, the FIRST sets of its productions must be disjoint from 
its FOLLOW set

**We can often transform a grammar to satisfy this if needed

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

LL Condition



0. A ::= B α
1. B ::= α | ε

Canonical FIRST FOLLOW Conflict

Problem

Because B is nullable, its FOLLOW set must 
be disjoint from the FIRST sets of its right-

hand sides!



Let’s try a top-down derivation of “α”

α

Lookahead Remaining

A

α

B

A

αε

OR

0. A ::= B α
1. B ::= α | ε

α

B



Let’s try a top-down derivation of “α”

A

α

B

A

αε

WHICH 
ONE?

0. A ::= B α
1. B ::= α | ε

α

B We don’t know! Again, 
we can’t see more than 

α!



Canonical FIRST FOLLOW Conflict Solution

Solution
0. A ::= B α
1. B ::= α | ε

0. A ::= α Tail
1. Tail ::= α | ε

0. A ::= αα | α

Substitute the 
common prefix

Factor out the 
tail



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Watch out for Nullability! (Grammar 2)
Changing the grammar again…

x a 

Lookahead Remaining



What’s the issue?

FIRST FOLLOW Conflict

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Top down derivation of “ax”

x 

Lookahead Remaining

S

B

a           x

C



0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Top down derivation of “ax”

x 

Lookahead Remaining

S

B

a           ε            x

OR
C

S

B

a            x           x 

C



Applying the Fix: Substitute the Common Prefix, 
then Factor

0. S ::= a B
1. B ::= x | xx | y
2. C ::= ε | x

0. S ::= a B
1. B ::= x Tail | y
2. Tail ::= x | ε 

1

2



Top down derivation of “ax”

x 

Lookahead Remaining

0. S ::= a B
1. B ::= x Tail | y
2. Tail ::= x | ε 

S

B

a           x    ε

Tail


