
Section 4: CUP & LL
CSE 401/M501

Adapted from Autumn 2022

Administrivia

• Homework 2 is due tonight!
- You have late days if you need them (2 max)

• Parser is due one week from today
- Be sure to check your Scanner feedback – out later this week

• HW3 is out tomorrow, due in 1.5 weeks on Monday April 29th
• Only one late day allowed on this assignment so we can distribute

solutions before the midterm at the end of that week.
• More on hw3 in sections next week, but start before then if you can

3

Parser Live Demo

A video recording of this demo will be posted on the
website as a supplement

4

Language Hierarchies

The CUP parser generator
• Uses LALR(1)

– A little weaker (less selective), but many fewer states than LR(1) parsers

– Handles most realistic programming language grammars

– More selective than SLR (or LR(0)) about when to do reductions, so works for
more languages

The CUP parser generator

• LALR(1) parser generator based on YACC and Bison

• CUP can resolve some ambiguities itself
– Precedence for reduce/reduce conflicts

– Associativity for shift/reduce conflicts

– Useful for our project for things like arithmetic expressions (use exp+exp,
exp*exp, etc. for fewer non-terminals, then add precedence and associativity
declarations). Read the CUP docs!

Assign

Block

While
If

Print

ArrayAssign

MethodDecl

MainClass

Identifier

Program

Statement

VarDecl
ClassDecl

Type

Exp

Formal

Call

LessThanPlus Minus TimesAnd
ArrayLookup
ArrayLength

True
False

IntegerLiteral

NewObject
NewArray

Not

This
IdentifierExpression

BooleanType
IntegerType

IntArrayType

IdentifierType

MiniJava BNF with AST Nodes
Use this to check your work only after your team has examined the grammar and AST code first.

ClassDeclSimple
ClassDeclExtends (if there is “extends”)

VarDeclList

Assign

Block

While

If

Print

ArrayAssign

Abstract Syntax Tree Class Hierarchy
ASTNode

MethodDecl

MainClass

MethodDeclList

Identifier

StatementList

Program

Statement

VarDecl

ClassDecl
ClassDeclList

Type

Exp
ExpList

Formal
FormalList

Call

LessThan

Plus

Minus

Times

And

ArrayLookup

ArrayLength

True

False

IntegerLiteral

NewObject

NewArray

Not

This

IdentifierExpression

BooleanType

IntegerType

IntArrayType

IdentifierType

ClassDeclSimple

ClassDeclExtends

LL Parsing

A-10

UW CSE 401/M501 Autumn 2023 E-11

if X ::= Y1 Y2 Y3 ... Yk

Y = nullable

:

if X ::= Y1 Y2 Y3 ... Yk :

if X ::= Y1 Y2 Y3 ... Yk :

if X ::= Y1 Y2 Y3 ... Yk :

make nullable X copy FIRST[Y3] to FIRST[X]

copy FOLLOW[X] to FOLLOW[Y2] copy FIRST[Y3] to FOLLOW[Y1]

1 2

3 4

Computing FIRST, FOLLOW, & nullable (3)

repeat
 for each production X := Y1 Y2 … Yk
 if Y1 … Yk are all nullable (or if k = 0)
 set nullable[X] = true
 for each i from 1 to k and each j from i +1 to k
 if Y1 … Yi-1 are all nullable (or if i = 1)
 add FIRST[Yi] to FIRST[X]
 if Yi+1 … Yk are all nullable (or if i = k)
 add FOLLOW[X] to FOLLOW[Yi]
 if Yi+1 … Yj-1 are all nullable (or if i+1=j)
 add FIRST[Yj] to FOLLOW[Yi]
Until FIRST, FOLLOW, and nullable do not change

Computing FIRST, FOLLOW, and nullable

L L (k)

Left-to-Right
Only takes one pass,

performed from the left

Leftmost
At each point, finds the

derivation for the leftmost
handle (top-down)

k Terminal
Lookahead

Must determine derivation
from the next unparsed

terminal in the string
Typically k = 1, just like LR

• LL(k) scans left-to-right, builds leftmost derivation,
and looks ahead k symbols

• The LL condition enable the parser to choose
productions correctly with 1 symbol of look-ahead

• We can often transform a grammar to satisfy this if
needed

LL(k) parsing

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

LL(1) parsing: An example top-down derivation of “a z x”

z xa

Lookahead Remaining

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

B

a

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

B

a x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

B

a z x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

x

Lookahead Remaining

S

B

a z x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”
S

B

a z x

C

Successful parse!

For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

– If it is nullable, the FIRST sets of its productions must be disjoint from
its FOLLOW set

**We can often transform a grammar to satisfy this if needed

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

LL Condition

0. A ::= αβ | αγ

Canonical FIRST Conflict

Problem

The FIRST sets of the right-hand sides for
the SAME NON-TERMINAL must be disjoint!

Let’s try a top-down derivation of αβ

βα

Lookahead Remaining

A

βα

A

γα

OR

0. A ::= αβ | αγ

Let’s try a top-down derivation of αβ

A

βα

A

γα

WHICH
ONE?

0. A ::= αβ | αγ

We don’t know!

We are using an LL(1)
parser, we can’t see

more than α!

Canonical FIRST Conflict Solution

0. A ::= α Tail
1. Tail ::= β | γ

Solution

0. A ::= αβ | αγ
Factor out the
common prefix

When multiple productions of a nonterminal share a common prefix, turn the different suffixes
into a new nonterminal.

Top-Down Derivation of “αβ”

βα

Lookahead Remaining

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

Top-Down Derivation of “αβ”

β

Lookahead Remaining

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

β

Top-Down Derivation of “αβ”

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

β

Successful parse!

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Changing original grammar a little (Grammar 1)

z xa

Lookahead Remaining

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

What’s the issue?

There’s a FIRST Conflict!

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”: LL(1) can’t parse

z xa

Lookahead Remaining

S

B

a

S

w

a

OR

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Parse Tree without changing Grammar

S

B

a z x

C

Applying the Fix: Factor out the Common Prefix

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

x

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

a z x

Top-Down Derivation of “a z x”

x

Lookahead Remaining

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

S

Tail

B

C

a z x

Top-Down Derivation of “a z x”
S

Tail

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

a z x

Success!

Comparing Parse Trees
S

Tail

a z x

C

B Purple trees
are the same!

S

B

a z x

C

For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

– If it is nullable, the FIRST sets of its productions must be disjoint from
its FOLLOW set

**We can often transform a grammar to satisfy this if needed

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

LL Condition

0. A ::= B α
1. B ::= α | ε

Canonical FIRST FOLLOW Conflict

Problem

Because B is nullable, its FOLLOW set must
be disjoint from the FIRST sets of its right-

hand sides!

Let’s try a top-down derivation of “α”

α

Lookahead Remaining

A

α

B

A

αε

OR

0. A ::= B α
1. B ::= α | ε

α

B

Let’s try a top-down derivation of “α”

A

α

B

A

αε

WHICH
ONE?

0. A ::= B α
1. B ::= α | ε

α

B We don’t know! Again,
we can’t see more than

α!

Canonical FIRST FOLLOW Conflict Solution

Solution
0. A ::= B α
1. B ::= α | ε

0. A ::= α Tail
1. Tail ::= α | ε

0. A ::= αα | α

Substitute the
common prefix

Factor out the
tail

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Watch out for Nullability! (Grammar 2)
Changing the grammar again…

x a

Lookahead Remaining

What’s the issue?

FIRST FOLLOW Conflict

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Top down derivation of “ax”

x

Lookahead Remaining

S

B

a x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Top down derivation of “ax”

x

Lookahead Remaining

S

B

a ε x

OR
C

S

B

a x x

C

Applying the Fix: Substitute the Common Prefix,
then Factor

0. S ::= a B
1. B ::= x | xx | y
2. C ::= ε | x

0. S ::= a B
1. B ::= x Tail | y
2. Tail ::= x | ε

1

2

Top down derivation of “ax”

x

Lookahead Remaining

0. S ::= a B
1. B ::= x Tail | y
2. Tail ::= x | ε

S

B

a x ε

Tail

