
CSE 401/M501 – Compilers

Code Shape I – Basic Constructs
Hal Perkins
Spring 2024

UW CSE 401/M501 Spring 2024 K-1

Administrivia
• Midterm results out now; exam and solution on the web

– It was a bit too long, but there were lots of high scores so we
(mostly) came out ok

– If you did not do as well as you’d hoped, take a step back and
figure out why. Strong work the rest of the quarter will make a
difference. Remember that course staff is here to help.

• Parser/AST feedback out now – if any questions, please
send email to cse401-staff and cc your partner
– Too many projects didn’t compile or run correctly, which slowed

things down. Follow the specs and check your work (fresh clone
on attu with no extra software installed is the gold standard)

• Semantics/type checking due a week from tomorrow(!)
– Symbol table & type ADT checkin during sections this Thursday

• Regrades for old assignments (hw1, scanner, …) will close
soon – should be handled by now

UW CSE 401/M501 Spring 2024 K-2

Agenda

• Mapping source code to x86-64
– Mapping for other common architectures is similar

• This lecture: basic statements and expressions
– We’ll go quickly since this is review for many, fast

orientation for others, and pretty straightforward
• Next: Object representation, method calls, and

dynamic dispatch
• Later: specific details for project

Note: These slides include more than is specifically needed for the course project

UW CSE 401/M501 Spring 2024 K-5

Review: Variables

• For us, all data will be either:
– In a stack frame (method local variables)
– In an object (instance variables)

• Local variables accessed via %rbp
 movq -16(%rbp),%rax

• Object instance variables accessed via an
offset from an object address in a register
– Details later

UW CSE 401/M501 Spring 2024 K-6

Conventions for Examples

• Examples show code snippets in isolation
– Much the way we’ll generate code for different parts of

the AST in a compiler visitor pass
– Different perspective from the 351 holistic view

• Register %rax used here as a generic example
– Rename as needed for more complex code using multiple

registers
• 64-bit data used everywhere
• A few peephole optimizations shown to suggest what’s

possible
– Some might be fairly easy to do in our compiler project

UW CSE 401/M501 Spring 2024 K-7

What we’re skipping for now

• Real code generator needs to deal with many
other things like:
– Which registers are busy at which point in the

program
– Which registers to spill into memory when a new

register is needed and no free ones are available
– Dealing with different sizes of data
– Exploiting the full instruction set

UW CSE 401/M501 Spring 2024 K-8

Code Generation for Constants
• Source

 17
• x86-64

 movq $17,%rax
– Idea: realize constant value in a register

• Optimization: if constant is 0
 xorq %rax,%rax
(but some processors do better with movq $0,%rax – and this has
changed over time; also can be considerations about whether
condition codes are set or not)

UW CSE 401/M501 Spring 2024 K-9

Assignment Statement

• Source
 var = exp;

• x86-64
 <code to evaluate exp into, say, %rax>
 movq %rax,offsetvar(%rbp)

UW CSE 401/M501 Spring 2024 K-10

Unary Minus

• Source
 -exp

• x86-64
 <code evaluating exp into %rax>
 negq %rax

• Optimization
– Collapse -(-exp) to exp

• Unary plus is a no-op

UW CSE 401/M501 Spring 2024 K-11

Binary +

• Source
 exp1 + exp2

• x86-64
 <code evaluating exp1 into %rax>
 <code evaluating exp2 into %rdx>
 addq %rdx,%rax

UW CSE 401/M501 Spring 2024 K-12

Binary +
• Some optimizations
– If exp2 is a simple variable or constant, don’t need

to load it into another register first. Instead:
 addq exp2,%rax
– Change exp1 + (-exp2) into exp1-exp2

– If exp2 is 1
 incq %rax
• Somewhat surprising: whether this is better than

addq $1,%rax depends on processor implementation
and has changed over time

UW CSE 401/M501 Spring 2024 K-13

Binary -, *
• Same as +
– Use subq for – (but not commutative!)
– Use imulq for *

• Some optimizations
– Use left shift to multiply by powers of 2
– If your multiplier is slow or you’ve got free scalar units and

the multiplier is busy or you don’t want to power up the
multiplier circuit, you can do 10*x = (x<<3)+(x<<1)
• But might be slower depending on microarchitecture

– Use x+x or shift instead of 2*x, etc. (often faster)
– Can use leaq (%rax,%rax,4),%rax to compute 5*x, then

addq %rax,%rax to get 10*x, etc. etc., but leaq doesn’t set
condition codes

– Use decq for x-1 (but check: subq $1 might be faster)
UW CSE 401/M501 Spring 2024 K-14

Signed Integer Division
• Ghastly on x86-64

– Only works for 128-bit int divided by 64-bit int
• (similar instructions for 64-bit divided by 32-bit for 32-bit ints)

– Requires use of specific registers
– Very slow

• Source
 exp1 / exp2

• x86-64
 <code evaluating exp1 into %rax ONLY>
 <code evaluating exp2 into %rbx>
 cqto # extend to %rdx:%rax, clobbers %rdx
 idivq %rbx # quotient in %rax, remainder in %rdx

UW CSE 401/M501 Spring 2024 K-15

Control Flow

• Basic idea: decompose higher level operation into
conditional and unconditional gotos

• In the following, jfalse is used to mean jump when
a condition is false
– No such instruction on x86-64
– Will have to realize with appropriate sequence of

instructions to set condition codes followed by
conditional jumps

– Normally don’t need to actually generate the value
“true” or “false” in a register
• But this can be a useful shortcut hack for the project

UW CSE 401/M501 Spring 2024 K-16

While

• Source
 while (cond) stmt

• x86-64
test: <code evaluating cond>
 jfalse done
 <code for stmt>
 jmp test
done:

– Note: In generated asm code we will need to have unique
labels for each loop, conditional statement, etc.

UW CSE 401/M501 Spring 2024 K-17

A little computer architecture –
Instruction execution
• Actual execution of an instruction has multiple

steps/phases inside a processor. Fairly typical
steps for a simple processor:
– IF: instruction fetch. Load instruction from

memory/cache into internal processor register(s)
– ID: instruction decode / read operand registers
– EX: execute or calculate memory addresses
– MEM: access memory (not all instructions)
– WB: write back – store result

• (x86-64 is waaaaay more complex, but basic ideas are the same)
• See 351 textbook, sec. 4.4, 4.5, etc. for more details

UW CSE 401/M501 Spring 2024 K-18

Pipelining (on 1 slide, oversimplified)

• If instructions are independent, we can execute
them on an assembly line – start processing the
next one while previous one is in some later
stage. Ideally we could overlap like this:
1. IF ID EX MEM WB
2. IF ID EX MEM WB
3. IF ID EX MEM WB
4. IF ID EX MEM WB
5. IF ID …

• Modern processors have multiple function units
and buffers to support this

UW CSE 401/M501 Spring 2024 K-19

Pipelining bottlenecks

• This strategy works great – if the instructions are
independent. Things that cause problems:
– Output of one instruction needed for next one: next one

can’t proceed until data is available from earlier one
– Jumps: If there’s a conditional jump, the processor has to

either stall the pipeline until we decide whether to jump, or
make a guess and be prepared to “undo” if it guesses wrong

• Processors have lots of hardware to try to “guess right”
and avoid delays caused by these dependencies, but …

• Compilers can help the processor by generating code to
minimize these issues

UW CSE 401/M501 Spring 2024 K-20

Optimization for While
• Put the test at the end:

 jmp test
loop: <code for stmt>
test: <code evaluating cond>
 jtrue loop

• Why bother?
– Pulls one instruction (jmp) out of the loop
– Avoids a potential pipeline stall on jmp on each iteration

• Although modern processors will often predict control flow and
avoid the stall – x86-64 does this particularly well

• Easy to do from AST or other IR; not so easy if generating code
on the fly (e.g., recursive descent 1-pass compiler)

UW CSE 401/M501 Spring 2024 K-21

Do-While

• Source
 do stmt while(cond)

• x86-64
loop: <code for stmt>
 <code evaluating cond>
 jtrue loop

UW CSE 401/M501 Spring 2024 K-22

If

• Source
 if (cond) stmt

• x86-64
 <code evaluating cond>
 jfalse skip
 <code for stmt>
skip:

UW CSE 401/M501 Spring 2024 K-23

If-Else

• Source
 if (cond) stmt1 else stmt2

• x86-64
 <code evaluating cond>
 jfalse else
 <code for stmt1>
 jmp done
else: <code for stmt2>
done:

UW CSE 401/M501 Spring 2024 K-24

Jump Chaining

• Observation: naïve implementation can
produce jumps to jumps (if … elseif … else; or
nested loops and conditionals, …)

• Optimization: if a jump has as its target an
unconditional jump, change the target of the
first jump to the target of the second
– Repeat until no further changes
– Often done in peephole optimization pass after

initial code generation

UW CSE 401/M501 Spring 2024 K-25

Boolean Expressions

• What do we do with this?
 x > y

• It is an expression that evaluates to true or
false
– Could generate the value (1|0 or whatever the

local convention is)
– But normally we don’t want/need the value –

we’re only trying to decide whether to jump
• (Although for our project we might simplify and always

produce the value)

UW CSE 401/M501 Spring 2024 K-26

Code for exp1 > exp2

• Basic idea: Generated code depends on context:
– What is the jump target?
– Jump if the condition is true or if false?

• Example: evaluate exp1 > exp2, jump on false,
target if jump taken is L123
 <evaluate exp1 into %rax>
 <evaluate exp2 into %rdx>
 cmpq %rdx,%rax # dst-src = exp1-exp2
 jng L123

UW CSE 401/M501 Spring 2024 K-27

Boolean Operators: !

• Source
 ! exp

• Context: evaluate exp and jump to L123 if
false (or true)

• To compile !, just reverse the sense of the test:
evaluate exp and jump to L123 if true (or
false)

UW CSE 401/M501 Spring 2024 K-28

Boolean Operators: && and ||

• In C/C++/Java/C#/many others, these are
short-circuit operators
– Right operand is evaluated only if needed

• Basically, generate the if statements that jump
appropriately and only evaluate operands
when needed

UW CSE 401/M501 Spring 2024 K-29

Example: Code for &&

• Source
 if (exp1 && exp2) stmt

• x86-64
 <code for exp1>
 jfalse skip
 <code for exp2>
 jfalse skip
 <code for stmt>
skip:

UW CSE 401/M501 Spring 2024 K-30

Example: Code for ||

• Source
 if (exp1 || exp2) stmt

• x86-64
 <code for exp1>
 jtrue doit
 <code for exp2>
 jfalse skip
doit: <code for stmt>
skip:

UW CSE 401/M501 Spring 2024 K-31

Realizing Boolean Values

• If a boolean value needs to be stored in a
variable or method call parameter, generate
code needed to actually produce it

• Typical representations: 0 for false, +1 or -1 for
true
– C specifies 0 and 1 if stored; we’ll use that
– Best choice can depend on machine instructions &

language; normally some convention is picked
during the primeval history of the architecture

UW CSE 401/M501 Spring 2024 K-32

Boolean Values: Example
• Source

 var = bexp;
• x86-64

 <code for bexp>
 jfalse genFalse
 movq $1,%rax
 jmp store
genFalse:
 movq $0,%rax # or xorq
store:
 movq %rax,offsetvar(%rbp) # generated by asg stmt

UW CSE 401/M501 Spring 2024 K-33

Better, If Enough Registers
• Source

 var = bexp;
• x86-64

 xorq %rax,%rax # or movq $0,%rax
 <code for bexp>
 jfalse store
 incq %rax # or movq $1,%rax
store:
 movq %rax,offsetvar(%rbp) # generated by asg

• Better: use movecc instruction to avoid conditional jump
• Can also use conditional move instruction for sequences like

x = y<z ? y : z
UW CSE 401/M501 Spring 2024 K-34

Better yet: setcc

• Source
 var = x < y;

• x86-64
 movq offsetx(%rbp),%rax # load x
 cmpq offsety(%rbp),%rax # compare to y
 setl %al # set low byte %rax to 0/1
 movzbq %al,%rax # zero-extend to 64 bits
 movq %rax,offsetvar(%rbp) # gen. by asg stmt

UW CSE 401/M501 Spring 2024 K-35

Other Control Flow: switch

• Naïve: generate a chain of nested if-else if
statements

• Better: switch statement is intended to allow O(1)
selection, provided the set of switch values is
reasonably compact

• Idea: create a 1-D array of jumps or labels and
use the switch expression to select the right one
– Need to generate the equivalent of an if statement to

ensure that expression value is within bounds

UW CSE 401/M501 Spring 2024 K-36

Switch

• Source
switch (exp) {
 case 0: stmts0;
 case 1: stmts1;
 case 2: stmts2;
}

“break” is an unconditional
jump to the end of switch

• x86-64:
 <put exp in %rax>
 “if (%rax < 0 || %rax > 2)
 jmp defaultLabel”
 movq swtab(,%rax,8),%rax
 jmp *%rax
 .data
swtab:
 .quad L0
 .quad L1
 .quad L2
 .text
L0: <stmts0>
L1: <stmts1>
L2: <stmts2>

UW CSE 401/M501 Spring 2024 K-37

Arrays

• Several variations
• C/C++/Java
– 0-origin: an array with n elements contains

variables a[0]…a[n-1]
– 1 dimension (Java); 1 or more dimensions using

row major order (C/C++)
• Key step is evaluate subscript expression, then

calculate the location of the corresponding
array element

UW CSE 401/M501 Spring 2024 K-38

0-Origin 1-D Integer Arrays

• Source
 exp1[exp2]

• x86-64
 <evaluate exp1 (array address) into %rax>
 <evaluate exp2 into %rdx>
 address is (%rax,%rdx,8) # if 8 byte elements

• For our project, we’ll likely add exp1+8*exp2 to get the address of
(ptr to) the array element in a register. Use either shift/addq or
leaq. Maybe simpler that way….

UW CSE 401/M501 Spring 2024 K-39

2-D Arrays

• Subscripts start with 0 (default)
• C/C++, etc. use row-major order
– E.g., an array with 3 rows and 2 columns is stored in

sequence: a(0,0), a(0,1), a(1,0), a(1,1), a(2,0), a(2,1)
• Fortran uses column-major order
– Exercises: What is the layout? How do you calculate

location of a[i][j]? What happens when you pass array
references between Fortran and C/C++ code?

• Java does not have “real” 2-D arrays. A Java 2-D
array is a pointer to a list of pointers to the rows
– And rows may have different lengths (ragged arrays)

UW CSE 401/M501 Spring 2024 K-40

a[i][j] in C/C++/etc.

• If a is a “real” 0-origin, 2-D array, to find a[i][j], we
need to know:
– Values of i and j
– How many columns (but not rows!) the array has

• Location of a[i][j] is:
– Location of a + ((i*(#of columns) + j) * sizeof(elt))

• Can factor to pull out allocation-time constant
part and evaluate that once – no recalculating at
runtime; only calculate part depending on i, j
– Details in most compiler books

UW CSE 401/M501 Spring 2024 K-41

Coming Attractions

• Code Generation for Objects
– Representation
– Method calls
– Inheritance and overriding

• Strategies for implementing code generators
• Code improvement – “optimization”

UW CSE 401/M501 Spring 2024 K-42

