
CSE 401/M501 – Compilers

Intermediate Representations
Hal Perkins
Spring 2024

UW CSE 401/M501 Spring 2024 G-1

Administrivia
• Short hw3 due Monday – 1 late day max
• Midterm next Friday – topics + old exams online; blank

5x8 cards available at the end of class
– Review in sections next week

• Semantics/typechecking project assignment posted
now; due Tuesday, May 14, 1½ weeks after the
midterm
– Fair amount to do, so get started and work steadily; don’t

ignore completely until after midterm…
• And definitely plan to get a lot done next weekend after the

midterm, starting with symbol tables, Type ADT and methods, and
other data structures
– Required check-in showing APIs for symbol table and type ADTs during

May 9 sections - will award a point or something J

UW CSE 401/M501 Spring 2024 J-2

Agenda

• Survey of Intermediate Representations
– Graphical
• Concrete/Abstract Syntax Trees (ASTs)
• Control Flow Graph
• Dependence Graph

– Linear Representations
• Stack Based
• 3-Address

• Several of these will show up as we explore
program analysis and optimization

UW CSE 401/M501 Spring 2024 G-3

Compiler Structure (review)

UW CSE 401/M501 Spring 2024 G-4

Source Target

Scanner

Parser Middle
(optimization)

Code Gen

characters

tokens

IR

IR (often different)

Assembly or binary code

Semantic
Analysis (often

different)

IR

Intermediate Representations

• In most compilers, the parser builds an
intermediate representation of the program
– Typically an AST, as in the MiniJava project

• Rest of the compiler transforms the IR to improve
(“optimize”) it and eventually translate to final
target code
– Typically will transform initial IR to one or more

different IRs along the way
• Some general examples now; more specifics later

as needed

UW CSE 401/M501 Spring 2024 G-5

IR Design

• Decisions affect speed and efficiency of the
rest of the compiler
– General rule: compile time is important, but

performance/quality of generated code is often
more important

– Typical case for production code: compile a few
times, run many times
• Although the reverse is true during development

– So make choices that improve compiler speed as
long as they don’t compromise the desired result

UW CSE 401/M501 Spring 2024 G-6

IR Design

• Desirable properties
– Easy to generate
– Easy to manipulate
– Expressive
– Appropriate level of abstraction

• Different tradeoffs depending on compiler goals
• Different tradeoffs in different parts of the same

compiler
– So often different IRs in different parts

UW CSE 401/M501 Spring 2024 G-7

IR Design Taxonomy

• Structure
– Graphical (trees, graphs, etc.)
– Linear (code for some abstract machine)
– Hybrids are common (e.g., control-flow graphs

whose nodes are basic blocks of linear code)
• Abstraction Level
– High-level, near to source language
– Low-level, closer to machine (exposes more

details to compiler)

UW CSE 401/M501 Spring 2024 G-8

Examples: Array Reference

A[i,j]

or

 t1 ¬ A[i,j]

loadI 1 => r1
sub rj,r1 => r2
loadI 10 => r3
mult r2,r3 => r4
sub ri,r1 => r5
add r4,r5 => r6
loadI @A => r7
add r7,r6 => r8
load r8 => r9

UW CSE 401/M501 Spring 2024 G-9

subscript

A i j

Levels of Abstraction

• Key design decision: how much detail to expose
– Affects possibility and profitability of various

optimizations
• Depends on compiler phase: some semantic analysis &

optimizations are easier with high-level IRs close to the
source code. Low-level usually preferred for other
optimizations, register allocation, code generation, etc.

– Structural (graphical) IRs are typically fairly high-level
– but are also used for low-level

– Linear IRs are typically low-level
– But these generalizations don’t always hold

UW CSE 401/M501 Spring 2024 G-10

Graphical IRs

• IRs represented as a graph (or tree)
• Nodes and edges typically reflect some structure

of the program
– E.g., source code, control flow, data dependence

• May be large (especially syntax trees)
• High-level examples: syntax trees, DAGs
– Generally used in early phases of compilers

• Other examples: control flow graphs and data
dependency graphs
– Often used in optimization and code generation

UW CSE 401/M501 Spring 2024 G-11

Concrete Syntax Trees

• The full grammar is needed to guide the
parser, but contains many extraneous details
– Chain productions
– Rules that control precedence and associativity

• Typically the full concrete syntax tree (parse
tree) is not used explicitly, but sometimes we
want it (structured source code editors or for
transformations, …)

UW CSE 401/M501 Spring 2024 G-12

Abstract Syntax Trees

• Want only essential structural information
– Omit extra junk

• Can be represented explicitly as a tree or in a
linear form
– Example: LISP/Scheme/Racket S-expressions are

essentially ASTs (e.g., (* 2 (+ 3 4))
• Common output from parser; used for static

semantics (type checking, etc.) and sometimes
high-level optimizations

UW CSE 401/M501 Spring 2024 G-13

DAGs (Directed Acyclic Graphs)

• Variation on ASTs to capture shared substructures
• Pro: saves space, exposes redundant sub-expressions
• Con: less flexibility if part of tree should be changed
• Example: (a*2) + ((a*2) * b)

UW CSE 401/M501 Spring 2024 G-14

+
*

*

a 2
b

Linear IRs

• Pseudo-code for some abstract machine
• Level of abstraction varies
• Simple, compact data structures
– Commonly used: arrays, linked structures

• Examples: 3-address code, stack machine code

UW CSE 401/M501 Spring 2024 G-15

t1 ← 2
t2 ← b
t3 ← t1 * t2
t4 ← a
t5 ← t4 – t3

push 2
push b
multiply
push a
subtract

• Fairly compact
• Compiler can

control reuse of
names – clever
choice can reveal
optimizations

• ILOC & similar code

• Each instruction
consumes top of stack
& pushes result

• Very compact
• Easy to create and

interpret
• Java bytecode, MSIL

Abstraction Levels in Linear IR

• Linear IRs can also be close to the source
language, very low-level, or somewhere in
between.

• Example: Linear IRs for C array reference
a[i][j+2]

• High-level: t1 ¬ a[i,j+2]

UW CSE 401/M501 Spring 2024 G-16

More IRs for a[i][j+2]

• Medium-level
t1 ¬ j + 2
t2 ¬ i * 20
t3 ¬ t1 + t2
t4 ¬ 4 * t3
t5 ¬ addr a
t6 ¬ t5 + t4
t7 ¬ *t6

• Low-level
r1 ¬ [fp-4]
r2 ¬ r1 + 2
r3 ¬ [fp-8]
r4 ¬ r3 * 20
r5 ¬ r4 + r2
r6 ¬ 4 * r5
r7 ¬ fp – 216
f1 ¬ [r7+r6]

UW CSE 401/M501 Spring 2024 G-17

retains basic symbolic info
about variables expose all details of the low-level

layout; explicit memory refs and calcs

Abstraction Level Tradeoffs
• High-level: good for some high-level optimizations,

semantic checking; but can’t optimize things that are
hidden – like address arithmetic for array subscripting

• Low-level: need for good code generation and resource
utilization in back end but loses some semantic
knowledge (e.g., variables, data aggregates, source
relationships are usually missing)

• Medium-level: more detail but keeps more higher-level
semantic information – great for machine-independent
optimizations. Many (all?) optimizing compilers work
at this level

• Many compilers use all 3 in different phases

UW CSE 401/M501 Spring 2024 G-18

UW CSE 401/M501 Spring 2024 G-19

Three-Address Code (TAC)
• Usual form: x ¬ y op z

– One operator
– Maximum of 3 names
– (Copes with: nullary x ¬ y and unary x ¬ op y)

• Eg: x = 2 * (m + n) becomes
 t1 ¬ m + n; t2 ¬ 2 * t1; x ¬ t2
– You may prefer: add t1, m, n; mul t2, 2, t1; mov x, t2
– Invent as many new temp names as needed. “expression temps” – don’t

correspond to any user variables; de-anonymize expressions

• Store in a quad(ruple)
– <lhs, rhs1, op, rhs2>

UW CSE 401/M501 Spring 2024 G-20

Three Address Code

• Advantages
– Resembles code for actual machines
– Explicitly names intermediate results
– Compact
– Often easy to rearrange

• Various representations
– Quadruples, triples, SSA (Static Single Assignment)
– We will see much more of this…

UW CSE 401/M501 Spring 2024 G-21

Stack Machine Code Example
Hypothetical code for x = 2 * (m + n)

Compact: common opcodes just 1 byte wide; instructions have 0 or 1 operand

pushaddr x
pushconst 2
pushval n
pushval m
add
mult
store

@x
2
n
m

?
@x
2

m + n

?
@x

2*(m+n)

? ?

Stack Machine Code
• Originally used for stack-based computers (famous example: B5000,

~1961)
• Often used for virtual machines. Classic examples:

– Pascal – pcode
– Forth
– Java bytecode in a .class files (generated by Java compiler)
– MSIL in a .dll or .exe assembly (generated by C#/F#/VB compiler)

• Advantages
– Compact; mostly 0-address opcodes (fast download over slow network)
– Easy to generate; easy to write a front-end compiler, leaving the “heavy

lifting” and optimizations to the JIT
– Simple to interpret or compile to machine code

• Disadvantages
– Somewhat inconvenient/difficult to optimize directly
– Does not match up with modern chip architectures

UW CSE 401/M501 Spring 2024 G-22

Hybrid IRs

• Combination of structural and linear

• Level of abstraction varies

• Most common example: control-flow graph
(CFG)

UW CSE 401/M501 Spring 2024 G-23

Control Flow Graph (CFG)

• Nodes: basic blocks
• Edges: represent possible flow of control from

one block to another, i.e., possible execution
orderings
– Edge from A to B if B could execute immediately

after A in some possible execution

• Required for much of the analysis done during
optimization phases

UW CSE 401/M501 Spring 2024 G-24

Basic Blocks

• Fundamental concept in analysis/optimization
• A basic block is:
– A sequence of code
– One entry, one exit
– Always executes as a single unit (“straightline

code”) – so it can be treated as an indivisible unit
• We’ll ignore exceptions, at least for now

• Usually represented as some sort of a list
although Trees/DAGs are possible

UW CSE 401/M501 Spring 2024 G-25

CFG Example
print(“hello”);
a=7;
if (x == y) {
 print(“same”);
 b = 9;
} else {
 b = 10;
}
while (a < b) {
 a++;
 print(“bump”);
}
print(“finis”);

UW CSE 401/M501 Spring 2024 G-26

print(“hello”);
a = 7;
if (x == y);

print(“same”);
b = 9; b = 10;

while (a < b)

a++;
print(“bump”);

print(“finis”);

Basic Blocks: Start with Tuples
1 i = 1
2 j = 1
3 t1 = 10 * i
4 t2 = t1 + j
5 t3 = 8 * t2
6 t4 = t3 - 88
7 a[t4] = 0
8 j = j + 1
9 if j <= 10 goto #3

10 i = i + 1
11 if i <= 10 goto #2
12 i = 1
13 t5 = i - 1
14 t6 = 88 * t5
15 a[t6] = 1
16 i = i + 1
17 if i <= 10 goto #13

UW CSE 401/M501 Spring 2024 G-27

Typical "tuple stew" - IR generated by traversing an AST
Partition into Basic Blocks:

• Sequence of consecutive instructions
• No jumps into the middle of a BB
• No jumps out of the middles of a BB
• "I've started, so I'll finish"
• (Ignore exceptions)

Basic Blocks: Leaders
1 i = 1
2 j = 1
3 t1 = 10 * i
4 t2 = t1 + j
5 t3 = 8 * t2
6 t4 = t3 - 88
7 a[t4] = 0
8 j = j + 1
9 if j <= 10 goto #3

10 i = i + 1
11 if i <= 10 goto #2
12 i = 1
13 t5 = i - 1
14 t6 = 88 * t5
15 a[t6] = 1
16 i = i + 1
17 if i <= 10 goto #13

UW CSE 401/M501 Spring 2024 G-28

Identify Leaders (first instruction in a basic block):
• First instruction is a leader
• Any target of a branch/jump/goto
• Any instruction immediately after a branch/jump/goto

Leaders in red. Why is each leader a leader?

Basic Blocks: Flowgraph

UW CSE 401/M501 Spring 2024 G-29

i = 1

j = 1

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 - 88
a[t4] = 0
j = j + 1
if j <= 10 goto B3

B1

B2

B3

i = i + 1
if i <= 10 goto B2

B4

i = 1B5

t5 = i - 1
t6 = 88 * t5
a[t6] = 1
i = i + 1
if i <= 10 goto B6

B6

EXIT

ENTRY

Control Flow Graph ("CFG", again!)

• 3 loops total
• 2 of the loops are nested

Most of the execution likely spent
in loop bodies; that's where to
focus efforts at optimization

Identifying Basic Blocks: Recap

• Perform linear scan of instruction stream

• A basic blocks begins at each instruction that is:
– The beginning of a method
– The target of a branch
– Immediately follows a branch or return

UW CSE 401/M501 Spring 2024 G-30

Dependency Graphs

• Often used in conjunction with another IR
• Data dependency: edges between nodes that

reference common data
• Examples
– Block A defines x then B reads it (RAW – read after

write)
– Block A reads x then B writes it (WAR – “anti-

dependence”)
– Blocks A and B both write x (WAW) – order of blocks

must reflect original program semantics
• These restrict reorderings the compiler can do

UW CSE 401/M501 Spring 2024 G-31

What IR to Use?

• Common choice: all(!)
– AST used in early stages of the compiler
• Closer to source code
• Good for semantic analysis
• Facilitates some higher-level optimizations

– Lower to linear IR(s) for optimization and codegen
• Closer to machine code
• Exposes machine-related optimizations
• Use to build control-flow graph

– Hybrid (graph + linear IR = CFG) for dataflow & opt

UW CSE 401/M501 Spring 2024 G-32

Coming Attractions
• “Code shape” – target code for language

constructs
• Survey of compiler “optimizations”
• Analysis and transformation algorithms for

optimizations (including SSA IR)
• Back-end organization in production compilers
– Instruction selection and scheduling, register

allocation
• Other topics depending on time

• And we’ll also slip in project-specific codegen
UW CSE 401/M501 Spring 2024 G-33

