CSE 401/M501 - Compilers

LR Parser Construction

Hal Perkins

Spring 2024

Administrivia (1)

- HW1 sample solutions handed out after class today. Might be some use finishing up scanner project. Grades/feedback out soon.
- Scanners due Thursday, 11 pm - how's it going?
- Must read MiniJava overview as well as scanner assignment \& reread again when you think you're "done"
- Be sure to implement both kinds of comments
- Be sure to look carefully at MiniJava grammar to discover tokens
- Anything "quoted" in the MiniJava project grammar should be treated as a reserved word (token) in MiniJava, even if it's not that in full Java
- Be sure you can handle comments at end of file, also files with and without newlines at the end (and with and without comments at the end!)
- Scanner should continue after "invalid input character" errors
- Be sure to terminate with correct System.exit code ($0=0$ k, $1=e r r o r s$)
- Don't get "creative" with the specs - compiler must work as required
- Take advantage of JFlex regexp operations that go beyond basic regexps presented in class and on hw1 if they are useful
- Don't implement the parser just yet - plenty of time for that...
- Reminder: you have a partner(!) - be sure to take advantage
- Discussion board/email: never "I have a question" or "I am confused"
- Rather: "We are confused" or "We have a question" -)

Administrivia (2)

- Upcoming attractions:
- Today/Wednesday and in sections this week: LR parsing and LR parser construction
- HW2 (written questions on grammars, LR parsing) out shortly, due next Thur.
- Wednesday/Friday lectures: LR parsing conflicts, first/follow, abstract syntax trees and visitor pattern
- Next part of the project, Parser + AST visitors, out early next week, due a week and a half later
- More details in lectures and sections next week

New Administrivia (added Wed.)

- Written hw2 out now, due a week from Thursday. Covers LR parsing and parser construction.
- We'll finish up most of the background today and in sections tomorrow, but will have a bit left to do on Friday
- Reminder: scanners due tomorrow night, 11 pm . Try not to burn a late day on this one.

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
- Language generated by a CFG is generally not regular, but
- Language of viable prefixes for a CFG is regular
- So a DFA can be used to recognize handles
- LR Parser reduces when DFA accepts a handle

Prefixes, Handles, \&c (review)

- If S is the start symbol of a grammar G,
- If S =>* α then α is a sentential form of G
$-\gamma$ is a viable prefix of G if there is some derivation $S=>^{*}{ }_{r m} \alpha A w=>_{r m} \alpha \beta w$ and γ is a prefix of $\alpha \beta$
- These are the strings that can appear on the LR parser stack
- The occurrence of β in $\alpha \beta \mathrm{w}$ is the right side of a handle of $\alpha \beta w$
- An item is a marked production (a . at some position in the right hand side)
- [A ::= . XY] [A ::=X. Y] [A ::=XY.]

Building the LR(0) States

- Example grammar

$$
\begin{aligned}
& S^{\prime}::=S \$ \\
& S::=(L) \\
& S::=x \\
& L::=S \\
& L::=L, S
\end{aligned}
$$

- We add a production S^{\prime} with the original start symbol S followed by end of file (\$)
- We accept if we reach the end of S in this production
- Question: What language does this grammar generate?

Start of LR Parse
 0. $S^{\prime}::=S \$$
 1. $S::=(L)$
 2. $S::=\mathrm{x}$
 3. $L::=S$
 4. $L::=L, S$

- Initially
- Stack is empty
- (except for start state number usually)
- Input is the right hand side of S^{\prime}, i.e., $S \$$
- Initial configuration is [$\left.S^{\prime}::=. S \$\right]$
- But, since position is just before S, we are also just before anything that can be derived from S

Initial state

2. $S::=\mathrm{x}$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ _ \text {start } \\
& S::=.(L) \\
& S::=. \mathrm{x} \text { completion }
\end{aligned}
$$

- A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left-hand side nonterminal appears immediately following a dot in some item already in the state

Shift Actions (1)

1. $S::=(L)$
2. $S::=\mathrm{x}$
3. $L::=S$
4. $L::=L, S$

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=\mathrm{x}
\end{aligned}
$$

- To shift past the x, add a new state with appropriate item(s), including their closure
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

Shift Actions (2)

0. $S^{\prime}::=S \$$
1. $S::=(L)$
2. $S::=\mathrm{x}$
3. $L::=S$
4. $L::=L, S$

- If we shift past the (, we are at the beginning of L
- The closure adds all productions that start with L
- and that requires adding all productions starting with S

Goto Actions

$$
\begin{aligned}
& S^{\prime}::=. S \$ \\
& S::=.(L) \\
& S::=. x
\end{aligned}
$$

- Once we reduce S, we'll pop the rhs from the stack exposing a previous state. Add a goto transition on S for this (i.e., if we back up into this state having reduced a rhs to S, then we need a goto transition on S to another state).

Basic Construction Operations

- Closure (S)
- Adds all items implied by items already in S
- Goto (I, X)
$-I$ is a set of items
$-X$ is a grammar symbol (terminal or non-terminal)
- Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

- Closure $(S)=$
repeat
for any item $[A::=\alpha \cdot B \beta]$ in S
for all productions $B::=\gamma$
add $[B::=. \gamma]$ to S
until S does not change
return S
- Classic example of a fixed-point algorithm

Goto Algorithm

- Goto $(I, X)=$
set new to the empty set for each item $[A::=\alpha . X \beta]$ in $/$ add $[A::=\alpha X . \beta]$ to new
return Closure (new)
- This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production $S^{\prime}::=S$ \$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ([$\left.S^{\prime}::=. S \$\right]$)
- Initialize E to empty

LR(0) Construction Algorithm

```
repeat
    for each state I in T
        for each item [A ::= \alpha . X \beta] in I
        Let new be Goto(I, X)
        Add new to T if not present
        Add }I\xrightarrow{}{X}\mathrm{ new to }E\mathrm{ if not present
until }E\mathrm{ and }T\mathrm{ do not change in this iteration
```

- Footnote: For the marker \$, we don't compute goto(I, \$); instead, we make this an accept action.

0. $S^{\prime}::=S \$$
 Example: States for
 1. $S::=(L)$
 2. $S::=\mathrm{x}$
 3. $L::=S$
 4. $L::=L, S$

Example: States for

$$
\text { 2. } S::=\mathrm{x}
$$

$$
\text { 3. } \angle::=S
$$

$$
\text { 4. } L::=\angle, S
$$

Building the Parse Tables (1)

- For each edge $I \xrightarrow{x} J$
- if X is a terminal, put $s j$ in column X, row I of the action table (shift to state j)
- If X is a non-terminal, put gj in column X, row I of the goto table

Building the Parse Tables (2)

- For each state I containing an item [S' ::= S . \$], put accept in column \$ of row I
- Finally, for any state containing [$A::=\gamma$.] put action rn (reduce) in every column of row I in the table, where n is the production number
- i.e., when it reaches this state, the DFA has discovered that $A::=\gamma$ is a handle, so the parser should reduce γ to A

0. $S^{\prime}::=S \$$
 Example: Tables for
 1. $S::=(L)$
 2. $S::=x$
 3. $L::=S$
 4. $L::=L, S$

0. $S^{\prime}::=S \$$
 Example: Tables for
 1. $S::=(L)$
 2. $S::=\mathrm{x}$
 3. $L::=S$
 4. $L::=L, S$

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
- No lookahead yet
- Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same
- A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.

A Grammar that is not $\operatorname{LR}(0)$

- Build the state machine and parse tables for a simple expression grammar

$$
\begin{aligned}
& E^{\prime}::=E \$ \\
& E::=T+E \\
& E::=T \\
& T::=x
\end{aligned}
$$

How can we solve conflicts like this?

- Idea: look at the next symbol after the handle before deciding whether to reduce
- Easiest: SLR - Simple LR. Reduce only if next input terminal symbol could follow resulting nonterminal
- Suppose we've reached [$A::=\beta$.] and the next input is x
- Don't reduce unless $A x$ can appear in some sentential form
- This is the r^{0} idea!
- More complex: LR and LALR. Store lookahead symbols in individual items to keep track of what can follow a particular instance of a reduction
- LALR used by YACC/Bison/CUP; we won't examine in detail

SLR Parsers

- Idea: Use information about what can follow a nonterminal to decide if we should perform a reduction; don't reduce if the next input symbol can't ever follow the resulting non-terminal
- To decide, for each non-terminal A we need to know $\operatorname{FOLLOW}(A)$ - the set of terminal symbols that can follow A in some possible derivation
- i.e., t is in $\operatorname{FOLLOW}(A)$ if there is some possible derivation that contains At
- To compute this, we need to compute FIRST (γ) for strings γ that can follow A

Calculating FIRST (γ)

- Sounds easy... If $\gamma=X Y Z$, then $\operatorname{FIRST}(\gamma)$ is FIRST(X), right?
- But what if we have the rule $X::=\varepsilon$?
- In that case, FIRST (γ) includes anything that can follow X, i.e. $\operatorname{FOLLOW}(X)$, which includes $\operatorname{FIRST}(Y)$ and, if Y can derive $\varepsilon, \operatorname{FIRST}(Z)$, and if Z can derive ε, \ldots
- So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other nonterminals, as well as which ones can derive ε

FIRST, FOLLOW, and nullable

- nullable (X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, $\operatorname{FIRST}(\gamma)$ is the set of terminals that can begin strings derived from γ
- For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ
- FOLLOW (X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together
- Footnote: Textbook doesn't use a separate nullable(X) attribute, instead it indicates nullable by including ε in FIRST(X). Both will wind up with same results, but one or the other might be easier to follow, so to speak..

Computing FIRST, FOLLOW, and nullable (1)

- Initialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a
- Repeatedly apply four simple observations to update these sets
- Stop when there are no further changes
- Another fixed-point algorithm

Computing FIRST, FOLLOW, and nullable (2)

repeat
for each production $X:=Y_{1} Y_{2} Y_{3} \ldots Y_{\mathrm{k}-2} Y_{\mathrm{k}-1} Y_{\mathrm{k}}$
if $Y_{1} \ldots Y_{\mathrm{k}}$ are all nullable (or if $k=0$)
set nullable $[X]=$ true
for each i from 1 to k and each j from $i+1$ to k
if $Y_{1} \ldots Y_{i-1}$ are all nullable (or if $i=1$) add FIRST[Y_{i}] to FIRST[$\left.X\right]$
Until FIRST, FOLLOW, and nullable do not change

Computing FIRST, FOLLOW, \& nullable (3)

Example (initial)

- Grammar

$$
\begin{aligned}
& Z::=\mathrm{d} \\
& Z::=X Y Z \\
& Y::=\varepsilon \\
& Y::=\mathrm{c} \\
& X::=Y \\
& X::=\mathrm{a}
\end{aligned}
$$

nullable FIRST
FOLLOW

$$
Z \text { no }
$$

Example (final)

- Grammar

$$
\begin{aligned}
& Z::=\mathrm{d} \\
& Z::=X Y Z \\
& Y::=\varepsilon \\
& Y::=\mathrm{c} \\
& X::=Y \\
& X::=\mathrm{a}
\end{aligned}
$$

nullable FIRST FOLLOW
X no yes a, c a, c, d
Y no yes
c
a, c, d

Z no
a, c, d

LR(0) Reduce Actions (review)

- In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol
- Algorithm:

Initialize R to empty
for each state $/$ in T
for each item [$A::=\alpha$.] in I

$$
\operatorname{add}(I, A::=\alpha) \text { to } R
$$

SLR Construction

- This is identical to $\operatorname{LR}(0)$ - states, etc., except for the calculation of reduce actions
- Algorithm:

Initialize R to empty
for each state I in T
for each item [A ::= α.] in I
for each terminal a in $\operatorname{FOLLOW}(A)$ new!
add $(I, \mathrm{a}, A::=\alpha)$ to R

- i.e., reduce α to A in state I only on lookahead a

0. $\mathrm{E}^{\prime}::=\mathrm{E}$ \$
 SLR Parser for
 1. $\mathrm{E}::=\mathrm{T}+\mathrm{E}$
 2. $\mathrm{E}::=\mathrm{T}$
 3. $\mathrm{T}::=\mathrm{x}$

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information
- So lookahead information is associated with specific items rather than using FOLLOW for the non-terminal, which ignores the context where that non-terminal appears in the derivation

LR(1) Items

- An $\operatorname{LR}(1)$ item $[A::=\alpha \cdot \beta, a]$ is
- A grammar production ($A::=\alpha \beta$)
- A right hand side position (the dot)
- A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from β a.
- Full construction: see the book(s)

LR(1) Tradeoffs

- LR(1)
- Pro: extremely precise; largest set of grammars
- Con: potentially very large parse tables with many states

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged

$$
\begin{aligned}
& {[A::=x \cdot y, a]} \\
& {[A::=x \cdot y, b]}
\end{aligned}
$$

to produce

$$
\text { [A ::=x } \cdot \mathrm{y}, \mathrm{ab}]
$$

$\operatorname{LALR}(1)$ vs LR(1)

- $\operatorname{LALR}(1)$ tables can have many fewer states than $\mathrm{LR}(1)$
- Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful because of the more fine-grained lookahead info in the states
- After the merge step, LALR(1) acts like SLR parser with "smarter" FOLLOW sets (can be specific to particular handles)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)
- Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

Language Hierarchies

Coming Attractions

Lecture

- ASTs and Visitor pattern
- LL(k) Parsing - Top-Down
- Recursive Descent Parsers
- What you can do if you want a parser in a hurry

Sections next week

- AST construction - what do do while you parse!
- Visitor Pattern details - how to traverse ASTs for further processing (type checking, code gen, ...)

