Section 4: CUP & LL

Administrivia

® Homework 2 is due tonight!

- You have late days if you need them (2 max)

® Parseris due one week from today

- Besure to check your Scanner feedback — out later this week

® HWS3is out tomorrow, due in 1.5 weeks on Monday, October 28"

® Only one late day allowed on this assignment so we can distribute solutions before the midterm at

the end of that week.

® More on hw3 in sections next week, but start before then if you can

13:00-14:00 OH (Richard) 14 | 10:00-11:00 OH (Connor)
CSE2151 CSE2150

14:30-15:20 Lecture 15:30-16:30 OH (Eric)
CSE2G10 CSE2153

ASTs & visitors

slides

15:30-16:30 OH (Karen)
CSE2150

15

12:00-13:00 OH (Richard)
CSE2151

14:30-15:20 Lecture
CSE2G10
LL Parsing & recursive descent (3.3)

clides
ggggg

15:30-16:30 OH (Eric)
CSE2153

16 J section
CUP parser generator, ASTs; LL parsing

15:30-16:30 OH {Connor)
CSE2150

23:59 hw2 due (LR grammars)

14:30-15:20 Lecture
CSE2G10
Intro to semantics and type checking (4.1-4.2)

15:30-16:30 OH (Karen)
CSE2152

18

Parser Live Demo

Language Hierarchies

unambiguous grammars ambiguous
grammars

/ IR) LRK)
MmO LRQ)

/|

The CUP parser generator

e Uses LALR(1)
— A little weaker (less selective), but many fewer states than LR(1) parsers
— Handles most realistic programming language grammars

— More selective than SLR (or LR(0)) about when to do reductions, so works for
more languages

The CUP parser generator

 LALR(1) parser generator based on YACC and Bison

e CUP can resolve some ambiguities itself
— Precedence for reduce/reduce conflicts
— Associativity for shift/reduce conflicts

— Useful for our project for things like arithmetic expressions (use exp+exp,
exp*exp, etc. for fewer non-terminals, then add precedence and associativity
declarations). Read the CUP docs!

Program
MainClass
ClassDecl
VarDecl
MethodDecl
Type

Statement

Exp

Identifier

Goal

MainClass ::

ClassDeclaration
VarDeclaration

MethodDeclaration ::

Type

Statement ::

Expression ::

= "class" Identifier ("extends" Identifier)? "{" (VarDeclaration)* (MethodDeclaration)* "}"

MiniJava Grammar -> AST Node

Use this to check your work only after your team has examined the grammar and AST code first.

MainClass (ClassDeclaration)* <EOF>

"class" Identifier l|{l| vvpublic" "static" "void" "main" ll(ll lvsu.ingll u[u ll]" Identifier ")ll ll{u Statement ll}ll |v}ll

::= Type Identifier ";"
"public" Type Identifier "(" (Type Identifier}("," Type Identifier)*)? ")" "{" (VarDeclaration)* (Statement)* "return" Expression ";" "}"

"int" " "]
"boolean” Formal }

it Block

Identifier

"{" (Statement)* "}" /

"if" "(" Expression ")" Statement "else" Statement
"while" "(" Expression ")" Statement
"System.out.println" "(" Expression ")" ";"
Identifier "=" Expression ";"

Identifier "[" Expression "]" "=" Expression ";"
Expression ("&&" | "<" | "+" | "-" | "*") Expression
Expression "[" Expression "]"

Expression "." "length"

Expression "." Identifier "(" (Expression ("," Expression)*)? ")"
<INTEGER_LITERAL>

"rue"

"false"

Identifier

"this"

"new" "int" "[" Expression "]"

"new" Identifier "(" ")"

"I" Expression

"(" Expression ")"

Identifier ::= <IDENTIFIER>

ClassDeclSimple
ClassDeclExtends (if there is “extends”)

Abstract Syntax Tree Class Hierarchy

Program ClassDeclSimple
Dontess / ClassDeclExtends IntArrayType
ClassDecl BooleanType

IntegerType

ASTNode

ClassDeclList

VarDecl dentifierType Block
VarDeclList I
MethodDecl While
MethodDeclList Print
Formal Assign
FormalList ArrayAssign
Type And IntegerLiteral
Statement LessThan True
StatementList Plus False
Exp ’ Minus IdentifierExpression
ExpList Times This
Identifier

ArrayLookup NewArray

ArrayLength NewObject

Call Not

LL Parsing

A-9

Computing FIRST, FOLLOW, & nullable (3)

¥ | = nullable

® ®

if X | o= | ¥ | Yo | ¥ |- | % | if X | o= | ¥ | Yo [Y5 || Y |
4 N~
make| x | nullable copy FIRST[Y,] to FIRST[X]
if X o=l | || % if X o=l | ||] 4|
_/ \/

copy FOLLOW[X] to FOLLOWI[Y,] | copy FIRST[Y;] to FOLLOW[Y,]

UW CSE 401/M501 Autumn 2023

E-10

Computing FIRST, FOLLOW, and nullable

repeat
for each production X :=Y; Y, ... Y,
if Y; ... Y, are all nullable (or if k = 0)
set nullable[X] = true
for eachi from 1 to k and eachj fromi+1tok
if Y, ... Yi;are all nullable (orifi=1)
add FIRST[Y,] to FIRST[X]
if Yi;q ... Yareall nullable (orifi=k)
add FOLLOWI[X] to FOLLOWI[Y/]
if Yi,; ... Y. are all nullable (or if i+1=j)
add FIRST[Y;] to FOLLOWT[Y]]
Until FIRST, FOLLOW, and nullable do not change

Left-to-Right
Only takes one pass,
performed from the left

L L (k)

Leftmost

At each point, finds the
derivation for the leftmost
handle (top-down)

k Terminal
Lookahead

Must determine derivation
from the next unparsed
terminal in the string
Typically k = 1, just like LR

LL(k) parsing

e LL(k) scans left-to-right, builds leftmost derivation,
and looks ahead k symbols

 The LL condition enable the parser to choose
productions correctly with 1 symbol of look-ahead

 We can often transform a grammar to satisfy this if
needed

LL(1) parsing: An example top-down derivation of “a z x”

0. S a
1. B = C
2. C g

Lookahead = Remaining

d Z X

Top-Down Derivation of “a z x”

S 0. S ::=a B
| 1. B ::=Cx | vy
B 2. C ::= ¢ | =z

Lookahead Remaining

d ZX

Top-Down Derivation of “a z x”

S 0 S ::= a B
| 1. B ::=Cx | vy
B 2. C ::= ¢ | z
|\
\
C \
\
\ Lookahead Remaining
\\
\
\ Z X
a X

Top-Down Derivation of “a z x”

S 0 S ::= a B
| 1. B ::=Cx | vy
B 2. C ::= ¢ | z
l\
\
C
\
\ Lookahead Remaining
\\
\
\ Z X
a z X

Top-Down Derivation of “a z x”

S 0. S ::= a B
\ 1. B ::=Cx | vy
B 2. C ::=¢ | z
C
Lookahead Remaining
X
a 4 X

Top-Down Derivation of “a z x”

S 0. S ::= a B

\ 1. B ::=Cx | vy
B 2. C ::= ¢ | z
C

Successful parse!

LL Condition

For each nonterminal in the grammar:

— Its productions must have disjoint FIRST sets

A ::= x | B A ::= x | B
X v

B ::= X B 1:=vy

— Ifitis nullable, the FIRST sets of its productions must be disjoint from
its FOLLOW set

S := A X S t:= A vy
= g | x JAZ:=€|X

X a

**We can often transform a grammar to satisfy this if needed

Canonical FIRST Conflict

Problem
0. A ::=oaf | ay

The FIRST sets of the right-hand sides for
the SAME NON-TERMINAL must be disjoint!

Let’s try a top-down derivation of of

0. A ::=

Lookahead Remaining

af | ay

\ Lo P

Let’s try a top-down derivation of of

A A 0. A ::=oaf | ay
\ \
\\ \\ We don’t know!
\ \\
\‘\ WHICH ' We are using an LL(1)
' ONE? '\ parser, we can’t see
\ \ more than a!

Canonical FIRST Conflict Solution

Solution

0. A ::=o0af | ay

_ Factor out the
0. A a Tail

1. Tail ::= B | v

common prefix

When multiple productions of a nonterminal share a common prefix, turn the different suffixes
into a new nonterminal.

Top-Down Derivation of “ap”

A 0. A ::= a Tail
l. Tail ::= B | vy

Tail

Lookahead Remaining

« P

Top-Down Derivation of “ap”

A 0. A ::= a Tail
l. Tail ::= B | vy
Tail
\ Lookahead Remaining
B
o Y

Top-Down Derivation of “af”

A 0. A ::= a Tail
1. Tail ::= B | v

Tail

\ Successful parse!

« P

Changing original grammar a little (Grammar 1)

0. S
1. B
2. C

<ahead

Loo

d

Remaining

Z X

What’'s the issue?

2. C =

There’s a FIRST Conflict!

wn
I

d

I
m QW
— X |
S

Top-Down Derivation of “a z x”: LL(1) can’t parse
0. S ::
B ::
C ::

OR

1.
2.
Loo

d

aB| aw

C x |

3

Z

ZX

Y

kahead Remaining

Parse Tree without changing Grammar

O— ™ — W

0. S ::
B ::=
C ::

1.
2.

a
C
3

B
X
|

|
|
z

a
Y

'

Top-Down Derivation of “a z x”

Lookahead Remaining

d ZX

Top-Down Derivation of “a z x”

Lookahead Remaining

VA X

Top-Down Derivation of “a z x”

C Lookahead Remaining

VA X

Top-Down Derivation of “a z x”

cC Lookahead Remaining

\ Z X

Top-Down Derivation of “a z x”

C Lookahead Remaining

\ Z X

Top-Down Derivation of “a z x”

C Lookahead Remaining

X

Top-Down Derivation of “a z x”

C Success!

Comparing Parse Trees

S

\ \
T?ll 3
3 Purple trees |

are the same! C

LL Condition

For each nonterminal in the grammar:

— Its productions must have disjoint FIRST sets

A ::= x | B A ::= x | B
X v

B ::= X B 1:=vy

— Ifitis nullable, the FIRST sets of its productions must be disjoint from
its FOLLOW set

S := A X S t:= A vy
= g | x JAZ:=€|X

X a

**We can often transform a grammar to satisfy this if needed

Canonical FIRST FOLLOW Conflict

Problem
0. A ::=B o
1. B ::=a | €

Because B is nullable, its FOLLOW set must
be disjoint from the FIRST sets of its right-
hand sides!

Let’s try a top-down derivation of “a”

Lookahead Remaining

\ \ ol

B o
>

Let’s try a top-down derivation of “a”

B \ R '\ We don’t know! Again,
'\ WHICH ' wecan’t see more than
\\ ONE? \\ a!

B o
>

Canonical FIRST FOLLOW Conflict Solution

M O
w >

1. Tail

Solution
B o
ax | €
ax | o
a Tail

Substitute the
common prefix

Factor out the
tail

Watch out for Nullability! (Grammar 2)
Changing the grammar again...

0. S
1. B

2. C

Loo

<ahead

d

Remaining

X

What’'s the issue?

2. C =

@p
[

vy,

|
m O W
— | K |

FIRST FOLLOW Conflict

Top down derivation of “ax”

N — O

Loo

Q T W»n
I
m (O Q©

kahead Remaining

X

Top down derivation of “ax”

cC . C ' Lookahead Remaining

\ \ X

Applying the Fix: Substitute the Common Prefix,

0. S ::= a B

1 1. B ::=x | xx | y
2. C =8¢ | x
0. S = a B

2 1. B = x Tail | y
2. Tail ::= x | €

Top down derivation of “ax”

S 0. S ::= a B
| 1. B ::=x Tail | y
B 2. Tail ::= x | €

Lookahead Remaining

\ T

