CSE 401/M501 — Compilers

LR Parser Construction
Hal Perkins
Autumn 2024

UW CSE 401/M501 Autumn 2024

E-1

Administrivia (1)

« HW1 sample solutions handed out after class today. Might be some use
finishing up scanner project. HW1 grades/feedback out right after class.

* Scanners due Thursday, 11:59 pm — how’s it going?
— Must read MiniJava overview as well as scanner assignment & reread again
when you think you’re “done”
* Be sure to implement both kinds of comments
* Be sure to look carefully at Minilava grammar to discover tokens

* Anything “quoted” in the Minilava project grammar should be treated as a reserved word
(token) in MiniJava, even if it’s not that in full Java

— Be sure you can handle comments at end of file, also files with and without
newlines at the end (and with and without comments at the end!)

— Scanner should continue after “invalid input character” errors

— Be sure to terminate with correct System.exit code (0=0k, 1=errors)
* Don’t get “creative” with the specs — compiler must work as required
— Take advantage of JFlex regexp operations that go beyond basic regexps
presented in class and on hw1 if they are useful
— Don’t implement the parser just yet — plenty of time for that...

— Reminder: you have a partner(!) — be sure to take advantage
» Discussion board/email: never “I have a question” or “I am confused”
» Rather: “We are confused” or “We have a question” ©

UW CSE 401/M501 Autumn 2024 E-2

Administrivia (2)

* Upcoming attractions:

— Today/Wednesday and in sections this week: LR
parsing and LR parser construction

— HW?2 (written questions on grammars, LR parsing) out
now, due next Thur.

— Wednesday/Friday lectures: LR parsing conflicts,
first/follow, abstract syntax trees and visitor pattern

— Next part of the project, Parser + AST visitors, out
early next week, due a week and a half later
* More details in lectures and sections next week

UW CSE 401/M501 Autumn 2024 E-3

New Administrivia (added Wed.)

* Written hw2 out now, due a week from Thursday.
Covers LR parsing and parser construction.

— WEe'll finish up most of the background today and in
sections tomorrow, but will have a bit left to do on
Friday

* Reminder: scanners due tomorrow night,
11:59 pm. Try not to burn a late day on this one.

UW CSE 401/M501 Autumn 2024 E-4

Agenda

e LR(O) state construction
 FIRST, FOLLOW, and nullable

* Variations: SLR, LR(1), LALR

UW CSE 401/M501 Autumn 2024

E-5

LR State Machine

* |dea: Build a DFA that recognizes handles

— Language generated by a CFG is generally not
regular, but

— Language of viable prefixes for a CFG is regular
* So a DFA can be used to recognize handles

— LR Parser reduces when DFA accepts a handle

UW CSE 401/M501 Autumn 2024

E-6

Prefixes, Handles, &c (review)

If S is the start symbol of a grammar G,
— If S =>* a then o is a sentential form of G

— v is a viable prefix of G if there is some derivation
S=>* oAw =>_ offw andy is a prefix of af3
 These are the strings that can appear on the LR parser stack
— The occurrence of B in afw is the right side of a handle of
ofw
* Anitem is a marked production (a . at some position
in the right hand side)

—[Ax=.XY] [A:=X.Y] [Auz=XY.]

UW CSE 401/M501 Autumn 2024 E-7

Building the LR(0) States

* Example grammar

§'::=S8S
Su=(L)
S:i=xX
L::=
L:=L,S

— We add a production S’ with the original start symbol S
followed by end of file (S)

* We accept if we reach the end of S in this production
— Question: What language does this grammar generate?

UW CSE 401/M501 Autumn 2024

E-8

0. 7::=5%
Start of LR Parse S et

3. L::= S

4, [:=L, 5

 |nitially
— Stack is empty
* (except for start state number usually)

— Input is the right hand side of §’, i.e., S S
— Initial configuration is [S"::=. S S]

— But, since position is just before S, we are also just
before anything that can be derived from S

UW CSE 401/M501 Autumn 2024 E-9

0. 7::=5%
Initial state S et

3. L::= S

4, [:=L, 5

S/ = 5$ +—start
S::
S::

] (L)‘\ .
X completion

e Astateis just a set of items

— Start: an initial set of items

— Completion (or closure): additional productions whose
left-hand side nonterminal appears immediately following
a dot in some item already in the state

UW CSE 401/M501 Autumn 2024 E-10

Shift Actions (1)

S’
S::
S::

. 5'$
(L)

« X

0. 7::=5%
1. S::=(L)
2. S:i=X
3. L::=5
4, L::=L, S

* To shift past the x, add a new state with appropriate item(s),
including their closure
— In this case, a single item; the closure adds nothing
— This state will lead to a reduction since no further shift is possible

UW CSE 401/M501 Autumn 2024 E-11

0. 7::=5%
Shift Actions (2)) 3525
Ll

Si:=(.L)
Sv=.5%| (|Lx=.L,S
S::=.(L) "L=. 85
Sii=.X Si=.(L)

S . X

* |If we shift past the (, we are at the beginning of L

* The closure adds all productions that start with L
— and that requires adding all productions starting with S

UW CSE 401/M501 Autumn 2024 E-12

0. 7::=5%
Goto Actions) e\
3. L::=5
4, [:=L, 5
S5=.5%|
S:i=.(L) 1 S57i=5.9%
S:i:=.X

* Once we reduce S, we’ll pop the rhs from the
stack exposing a previous state. Add a goto
transition on S for this (i.e., if we back up into this
state having reduced arhs to S, then we need a
goto transition on S to another state).

UW CSE 401/M501 Autumn 2024 E-13

Basic Construction Operations

e Closure (S)

— Adds all items implied by items already in S
e Goto (I, X)

— |is a set of items

— Xis a grammar symbol (terminal or non-terminal)

— Goto moves the dot past the symbol X in all
appropriate items in set /

UW CSE 401/M501 Autumn 2024 E-14

Closure Algorithm

e Closure (S) =
repeat
foranyitem[A::=a.Bf]inS
for all productions B ::=y
add [B::=.7]to S
until S does not change
return S

* Classic example of a fixed-point algorithm

UW CSE 401/M501 Autumn 2024 E-15

Goto Algorithm

e Goto (I, X) =
set new to the empty set
foreachitem[A:=a.X B]in/
add [A ::=a X. 3] to new

return Closure (new)

* This may create a new state, or may return an
existing one

UW CSE 401/M501 Autumn 2024 E-16

LR(0) Construction

* First, augment the grammar with an extra
start production S’ ::=S S

 Let T be the set of states

* Let E be the set of edges
* Initialize T to Closure ([S"::=.S5S])
* |nitialize E to empty

UW CSE 401/M501 Autumn 2024 E-17

LR(0) Construction Algorithm

repeat
foreachstate/inT
foreachitem[A:=a.X B]in/
Let new be Goto(/, X)
Add new to T if not present
Add I 45 new to E if not present
until £ and T do not change in this iteration

* Footnote: For the marker S, we don’t compute goto(/, S); instead, we
make this an accept action.

UW CSE 401/M501 Autumn 2024 E-18

0. 7::=5%
Example: States for e

3. L::=5

4, L:=L, S5

UW CSE 401/M501 Autumn 2024 E-19

0. 7::=5%
. 1. S::=(L)
Example: States for 2 Simx
3. L::=5
Q 4, L::=L, S
1 s
5=.5% = 5=5.%
lenil L x @ X
" Sii=X. [
ol
Si:=(.L
L::=.(5)4 (@
(CL::=.L,5‘ 5 La=L,.5
S::=.(L) L Si=(L.) ! >5::=.(L)
S::=.X L:=L ,5 5::=.X
S)l l
@ | ®) Ol
L::=5 S.:=(L) L:i=L,5.

UW CSE 401/M501 Autumn 2024 E-20

Building the Parse Tables (1)

* For each edge | =J

— if X is a terminal, put sj in column X, row [/ of the
action table (shift to state j)

— If X'is a non-terminal, put gj in column X, row / of
the goto table

UW CSE 401/M501 Autumn 2024 E-21

Building the Parse Tables (2)

* For each state / containing an item
S’ :=5.5], put accept in column S of row /

* Finally, for any state containing

A ::=v.] put action rn (reduce) in every
column of row / in the table, where n is the
production number

—i.e., when it reaches this state, the DFA has
discovered that A ::=y is a handle, so the parser
should reduce yto A

UW CSE 401/M501 Autumn 2024 E-22

o N o v Ao W N LB O

0. 7::= 5%
. 1. S::=(L)
Example: Tables for 2 Simx
3. L::=5
4. L::=L, S
() x , s S L
@ s @
Si=.5% Sn=5.%
T B
@5..(_"(R |
ol (@)
((izil s G
Su=.(L) L Su=(L.) JSu=.(1)
Siu=.x |su=tL.,5 1850=.x
S) S
i Y VL
g CEiIWS::=(L). @L:FL,S.
UW CSE 401/M501 Autumn 2024 E-23

00 N OO U1 A W N R, O

0. §.:=5%
Example: Tables f ; ingd
Xamp e. a ES Or 2. S:i=Xx
3. L::=5
4., =L, S
() x , $ S 1l
acc @ @ ,
s3 s2 g0 g’::= .(5$) " 5=5.%
— Su=.(L
2 r2 r2 r2 r Si=.X X @ST: X
s3 s2 g4 g5 3) (" y [
Su=(.L)
r3 3 r3 r3 3 [:=.5 (@)
((L:= L, S () Su=1,
6 s7 Su=.(L) L JSsSu=(L)|_r |Su=.
Sii=.X Si:=L.,S Sii=
rl rl rl rl rl S :)" s
s3 s2 g8 QS::=(L). qL =1,5
rd 4 4 r4 14

UW CSE 401/M501 Autumn 2024 E-24

Where Do We Stand?

* We have built the LR(0) state machine and
parser tables
— No lookahead yet

— Different variations of LR parsers add lookahead
information, but basic idea of states, closures, and
edges remains the same

A grammar is LR(O) if its LR(O) state machine

(equiv. parser tables) has no shift-reduce or

reduce-reduce conflicts.

UW CSE 401/M501 Autumn 2024 E-25

A Grammar that is not LR(O)

* Build the state machine and parse tables for a
simple expression grammar

E'::=ES
E:=T+E
E::=T

T =X

UW CSE 401/M501 Autumn 2024 E-26

Ei=FE$

|

~
+
™

LR(O) Parser for

WN = O
S mMm
HETE
X

) © X + $ E T

E' = E$ i E’ =E$ 1 s5 g2 g3
Eo= . T+E 2 acc
E::=.T T@ 3 2 s4,r2 2
Ti=.X ’EffT-JrE 4 | s5 g6 g3
— : 5 r3 r3 3
@ @ \"‘ |T 6 rl rl rl
Tu=x. [X r—
E:=T+.E = State 3 is has two possible
(&) E:=.T+E actions on +
Er=T+E et JE#=-T |
= T = = shift 4, or reduce 2

= .. Grammar is not LR(0)

UW CSE 401/M501 Autumn 2024 E-27

How can we solve conflicts like this?

* |dea: look at the next symbol after the handle before
deciding whether to reduce

* Easiest: SLR — Simple LR. Reduce only if next input
terminal symbol could follow resulting nonterminal

— Suppose we've reached [A ::= B .] and the next input is x
— Don’t reduce unless Ax can appear in some sentential form
e This is the #” £° idea!

* More complex: LR and LALR. Store lookahead symbols in
individual items to keep track of what can follow a
particular instance of a reduction

— LALR used by YACC/Bison/CUP; we won’t examine in detail

UW CSE 401/M501 Autumn 2024 E-28

SLR Parsers

* |dea: Use information about what can follow a non-
terminal to decide if we should perform a reduction;
don’t reduce if the next input symbol can’t ever
follow the resulting non-terminal

 To decide, for each non-terminal A we need to know
FOLLOW(A) — the set of terminal symbols that can
follow A in some possible derivation

— i.e., tis in FOLLOW(A) if there is some possible derivation
that contains At

— To compute this, we need to compute FIRST(y) for strings y
that can follow A

UW CSE 401/M501 Autumn 2024 E-29

Calculating FIRST(y)

* Sounds easy... Ify=XYZ, then FIRST(y) is
FIRST(X), right?

— But what if we have therule X::=€? (or X=>* g)

— In that case, FIRST(y) includes anything that can follow
X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y
can derive g, FIRST(Z), and if Z can derive g, ...

— So computing FIRST and FOLLOW involves knowing
FIRST and FOLLOW for other nonterminals, as well as
which ones can derive €

UW CSE 401/M501 Autumn 2024 E-30

FIRST, FOLLOW, and nullable

* nullable(X) is true if X can derive the empty string

* Given a string y of terminals and non-terminals, FIRST(y)
is the set of terminals that can begin y or strings derived
fromy

— For SLR we only need this for single terminal or non-terminal
symbols, not arbitrary strings y

 FOLLOW(X) is the set of terminals that can immediately
follow X in some derivation

* All three of these are computed together

Footnote: Textbook doesn’t use a separate nullable(X) attribute, instead it indicates nullable
by including € in FIRST(X). Both will wind up with same results, but one or the other might be
easier to follow, so to speak..

UW CSE 401/M501 Autumn 2024 E-31

Computing FIRST, FOLLOW, and
nullable (1)

* |nitialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a
* Repeatedly apply four simple observations to
update these sets
— Stop when there are no further changes
— Another fixed-point algorithm

UW CSE 401/M501 Autumn 2024 E-32

Computing FIRST, FOLLOW, and
nullable (2)

repeat
for each production X:=Y,; Y, Y; ... Y., Y1 Y
if Y; ... Y, are all nullable (or if kK =0)
set nullable[X] = true
for eachi from 1to kand eachj fromi+1to k
if Y, ... Y, are all nullable (orifi=1)
add FIRST[Y;] to FIRST[X]
if Yi,1 ... Y are all nullable (orifi=k)
add FOLLOW/[X] to FOLLOW[Y/]
if Yis1 ... Y1 are all nullable (or if i+1=j)
add FIRST[Y;] to FOLLOWT[Y]]
Until FIRST, FOLLOW, and nullable do not change

UW CSE 401/M501 Autumn 2024

ONOROMNG

E-33

Computing FIRST, FOLLOW, & nullable (3)

Y | = nullable
® @

if | X =YY |Ys] | ¥]: if | X =¥ | Y |Ys| | Y]
make | X | nullable copy FIRST[Y;] to FIRST[X]

If X | =¥ | ¥ ¥ |- | ¥k | : If X | =¥ | ¥ | Y3 || ¥k |-
\/ \/

copy FOLLOW[X] to FOLLOW|Y,] copy FIRST[Y3] to FOLLOW]Y,]

UW CSE 401/M501 Autumn 2024 E-34

Example (initial)

* Grammar nullable FIRST FOLLOW
Z:=d
X no
Z:=XYZ
Y. =¢
Y:=cC
Y no
X:i=Y
X:=a
Z no

UW CSE 401/M501 Autumn 2024 E-35

Example (final)

Grammar

Z::=d

X X < < N

=XYZ
RS
= C
=Y
= a

nullable
X neyes
Y nevyes
Z no

FIRST

UW CSE 401/M501 Autumn 2024

FOLLOW

E-36

LR(0) Reduce Actions (review)

* |[n a LR(O) parser, if a state contains a
reduction, it is unconditional regardless of the
next input symbol

* Algorithm:
Initialize R to empty
foreachstate/ in T
foreachitem[A:=a.]in/
add (/, A ::=a) toR

UW CSE 401/M501 Autumn 2024 E-37

SLR Construction

* This is identical to LR(0) — states, etc., except for the
calculation of reduce actions

* Algorithm:
Initialize R to empty
for each state/ in T
foreachitem[A::=a.]in/
for each terminal a in FOLLOW(A) = new!
add (/,a,A::=a)toR
— i.e., reduce o to A in state / only on lookahead a

UW CSE 401/M501 Autumn 2024 E-38

0. EE::=E$
1. E::=T+E
SLR Parser for S EeoT
3. Ti=Xx
@ @ « o+ § E T
E'::=.E$ E'::=E.$ 1 | s 92 g3
E: =.T+E 2 acc
E::=.T @ 3 s4 r2
TH=.X E;T+E 4 | s5 g6 g3
5 r3 r3
@ I @\'l' |T 6 r1
X e——E =T+ .E
(&) E:=.T+E
. E::=.T
E..—T+E.<—E:=.X
UW CSE 401/M501 Autumn 2024 E-39

On To LR(1)

* Many practical grammars are SLR
 LR(1) is more powerful yet

* Similar construction, but notion of an item is
more complex, incorporating lookahead
information

— So lookahead information is associated with
specific items rather than using FOLLOW for the
non-terminal, which ignores the context where
that non-terminal appears in the derivation

UW CSE 401/M501 Autumn 2024 E-40

LR(1) Items

* AnLR(1)item [A::=a.[3, a] is
— A grammar production (A ::= a3)
— A right hand side position (the dot)
— A lookahead symbol (a)
* |dea: This item indicates that o is the top of

the stack and the next input is derivable
from Pa.

* Full construction: see the book(s)

UW CSE 401/M501 Autumn 2024 E-41

LR(1) Tradeoffs

* LR(1)
— Pro: extremely precise; largest set of grammars

— Con: potentially very large parse tables with many
states

UW CSE 401/M501 Autumn 2024 E-42

LALR(1)

e Variation of LR(1), but merge any two states
that differ only in lookahead

— Example: these two would be merged

[A:=x.vy, a]

[A:=x.y, b]
to produce

[A::=x.y, ab]

UW CSE 401/M501 Autumn 2024 E-43

LALR(1) vs LR(1)

 LALR(1) tables can have many fewer states than LR(1)

— Somewhat surprising result: will actually have same
number of states as SLR parsers, even though LALR(1) is
more powerful because of the more fine-grained
lookahead info in the states

— After the merge step, LALR(1) acts like SLR parser with
“smarter” FOLLOW sets (can be specific to particular
handles)

 LALR(1) may have reduce conflicts where LR(1) would
not (but in practice this doesn’t happen often)

* Most practical bottom-up parser tools are LALR(1)
(e.g., yacc, bison, CUP, ...)

UW CSE 401/M501 Autumn 2024 E-44

Language Hierarchies

-~

unambiguous grammars

LK))

-

(" LL(1))

’

\\\\

LS

=

ambiguous
grammars

UW CSE 401/M501 Autumn 2024

E-45

Coming Attractions

Lecture
* ASTs and Visitor pattern
e LL(k) Parsing — Top-Down
* Recursive Descent Parsers
— What you can do if you want a parser in a hurry
Sections next week
e AST construction — what do do while you parse!

* Visitor Pattern details — how to traverse ASTs for
further processing (type checking, code gen, ...)

UW CSE 401/M501 Autumn 2024 E-46

