
CSE 401/M501 – Compilers

LR Parsing
Hal Perkins

Autumn 2024

UW CSE 401/M501 Autumn 2024 D-1

Administrivia
• HW1 due last night, but still have a late day or two if

you need it (but try to save them)
• Project:
– Scanner due Thursday night, but please shake down

infrastructure well before then
• DO NOT start on the parser yet – just edit token classes in the .cup

file (and any other small edits there needed to get a clean build)
– If you’re still looking for a partner / need a project repo set

up and haven’t contacted us yet, send email to cse401-
staff@cs

• HW2: LR parsing and grammars – due in 2 weeks, but
lectures aren’t quite far enough along. Will post when
we get enough background, probably Monday.

UW CSE 401/M501 Autumn 2024 D-2

Agenda

• LR Parsing
• Table-driven Parsers
• Parser States
• Shift-Reduce and Reduce-Reduce conflicts

UW CSE 401/M501 Autumn 2024 D-3

Bottom-Up Parsing

• Idea: Read the input left to right
• Whenever we’ve matched the right hand side

of a production, reduce it to the appropriate
non-terminal and add that non-terminal to
the parse tree

• The upper edge of this partial parse tree is
known as the frontier

UW CSE 401/M501 Autumn 2024 D-4

Example

• Grammar

 S ::= aABe
 A ::= Abc | b
 B ::= d

• Bottom-up Parse

UW CSE 401/M501 Autumn 2024 D-5

a b b c d e

S

A

A

B

LR(1) Parsing

• We’ll look at LR(1) parsers
– Left to right scan, Rightmost derivation, 1 symbol

lookahead
– Almost all practical programming languages have

an LR(1) grammar
– LALR(1), SLR(1), etc. – subsets of LR(1)
• LALR(1) can parse most real programming languages.

tables are more compact, and is used by YACC / Bison /
CUP / etc.

UW CSE 401/M501 Autumn 2024 D-6

LR Parsing in Greek

• The bottom-up parser reconstructs a reverse
rightmost derivation

• Given the rightmost derivation
S =>b1=>b2=>…=>bn-2=>bn-1=>bn = w

 the parser will first discover bn-1=>bn , then bn-2=>bn-1 ,
etc.

• Parsing terminates when
– b1 reduced to S (start symbol, success), or
– No match can be found (syntax error)

UW CSE 401/M501 Autumn 2024 D-7

How Do We Parse with This?

• Key: given what we’ve already seen and the next
input symbol (the lookahead), decide what to do.

• Choices:
– Shift: Advance 1 token further in the input
– Reduce: Perform a reduction

• Can reduce A=>b if both of these hold:
– A=>b is a valid production
– A=>b is a step in this rightmost derivation that produced

this input string
• This is known as a shift-reduce parser

UW CSE 401/M501 Autumn 2024 D-8

Sentential Forms

• If S =>* a, the string a is called a sentential form of
the grammar

• In the derivation
S =>b1=>b2=>…=>bn-2=>bn-1=>bn = w

 each of the bi are sentential forms
• A sentential form in a rightmost derivation is called a

right-sentential form (similarly for leftmost and left-
sentential)

UW CSE 401/M501 Autumn 2024 D-9

Handles
• Informally, a substring of the tree frontier that

matches the right side b of a production that is
part of the rightmost derivation of the current
input string
– Even if A::=b is a production, it is a handle only if b

matches the parse tree frontier at a point where
A::=b was used in this particular derivation

– b may appear in many other places in the frontier
without being the rhs of a handle for that particular
production

• Bottom-up parsing is all about finding handles
UW CSE 401/M501 Autumn 2024 D-10

Handle Examples

• In the derivation
S => aABe => aAde => aAbcde => abbcde
– abbcde is a right sentential form whose handle is

A::=b at position 2
– aAbcde is a right sentential form whose handle is

A::=Abc at position 4
• Note: some books take the left end of the match as the

position

UW CSE 401/M501 Autumn 2024 D-11

Handles Defined

• Formally, a handle of a right-sentential form g
is a production A ::= b and a position in g
where b may be replaced by A to produce the
previous right-sentential form in the rightmost
derivation of g
– Some sources use “handle” to refer only to the

right-hand side b and its position. Others mean
the entire production A::=b. Which one should be
clear from context.

UW CSE 401/M501 Autumn 2024 D-12

Implementing Shift-Reduce Parsers

• Key Data structures
– A stack holding the frontier of the tree
– A string with the remaining input

• Also need to encode the rules that tell us what
action to take given (a) the state of the stack
and (b) the lookahead symbol
– Typically a table that encodes a finite automata

(much more about that later…)

UW CSE 401/M501 Autumn 2024 D-13

Shift-Reduce Parser Operations

• Shift – push the next input symbol onto the
stack

• Reduce – if the top of the stack is the right
side of a handle A::=b, pop the right side b
and push the left side A

• Accept – announce success
• Error – syntax error discovered

UW CSE 401/M501 Autumn 2024 D-14

Shift-Reduce Example

Stack Input Action
$ abbcde$
$a bbcde$
$ab bcde$
$aA bcde$
$aAb cde$
$aAbc de$
$aA de$
$aAd e$
$aAB e$
$aABe $
$S $

UW CSE 401/M501 Autumn 2024 D-15

S ::= aABe
A ::= Abc | b
B ::= d

shift
shift
reduce
shift
shift
reduce
shift
reduce
shift
reduce
accept

How Do We Automate This?

• Cannot use clairvoyance in a real parser (alas…)
• Defn. Viable prefix – a prefix of any right-sentential

form that can appear on the stack of the shift-reduce
parser
– Equivalent: a prefix of a right-sentential form that does not

continue past the rightmost handle of that sentential form
– In Greek: g is a viable prefix of G if there is some derivation

S =>*rm aAw =>rm abw and g is a prefix of ab.
– The occurrence of b in abw is the right side of a handle of
abw

UW CSE 401/M501 Autumn 2024 D-16

How Do We Automate This?

• Fact: the set of viable prefixes of a CFG is a
regular language(!)

• Idea: Construct a DFA to recognize viable prefixes
given the stack and remaining input
– Perform reductions when we recognize the rhs of handles

UW CSE 401/M501 Autumn 2024 D-17

DFA for prefixes of

UW CSE 401/M501 Autumn 2024 D-18

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e S ::= aABe

accept

S

0

Trace
Stack Input
$ abbcde$
$a bbcde$
$ab bcde$
$aA bcde$
$aAb cde$
$aAbc de$
$aA de$
$aAd e$
$aAB e$
$aABe $
$S $

UW CSE 401/M501 Autumn 2024 D-19

S ::= aABe
A ::= Abc | b
B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e S ::= aABe

accept

S

0

Observations

• Way too much backtracking
– We want the parser to run in time proportional to

the length of the input

• Where the heck did this DFA come from
anyway?
– From the underlying grammar
– We’ll defer construction details for now

UW CSE 401/M501 Autumn 2024 D-20

Avoiding DFA Rescanning

• Observation: no need to restart DFA after a shift.
Stay in the same state and process next token.

• Observation: after a reduction, the contents of the
stack are the same as before except for the new non-
terminal on top that replaced the rhs of the
production
\ Scanning the stack will take us through the same
transitions as before until the last one
\ If we record state numbers on the stack, we can back up
directly to the appropriate state when we pop the right hand
side of a production from the stack

UW CSE 401/M501 Autumn 2024 D-21

Stack

• Change the stack to contain pairs of states and
symbols from the grammar
$s0 X1 s1 X2 s2 … Xn sn
– State s0 is the start state
– When we push a symbol on the stack, push the

symbol plus the new parser DFA state that we reach
– When we reduce, popping the handle will reveal the

state of the FA just prior to reading the handle

• Observation: in an actual parser, only the state numbers are needed, since
they implicitly contain the symbol information, but for explanations and
examples it can help to show both.

UW CSE 401/M501 Autumn 2024 D-22

Encoding the DFA in a Table

• A shift-reduce parser’s DFA can be encoded in
two tables
– One row for each state
– action table encodes what to do given the current

state and the next input symbol
– goto table encodes the transitions to take when

we back up into a state after a reduction and then
make a transition using the newly pushed
(reduced) non-terminal

UW CSE 401/M501 Autumn 2024 D-23

Actions (1)

• Given the current state and input symbol, the
main possible actions are
– si – shift the input symbol and state i onto the

stack (i.e., shift and move to state i)
– rj – reduce using grammar production j
• The production tells us how many <symbol, state> pairs

to pop off the stack (= length of RHS of production),
and the LHS nonterminal to push
• 🗝 Each production needs a unique number, i.e., A ::= α

| β needs to be split into A ::= α and A ::= β

UW CSE 401/M501 Autumn 2024 D-24

Actions (2)

• Other possible action table entries
– accept
– blank – no transition – syntax error
• A LR parser will detect an error as soon as possible on a

left-to-right scan
• A real compiler needs to produce an error message,

recover, and continue parsing when this happens
– (Often involves encoding error handling/recovery info in the

action table)

UW CSE 401/M501 Autumn 2024 D-25

Goto

• When a reduction is performed using A ::= β,
we pop |β| <symbol, state> pairs from the
stack revealing a state uncovered_s on the top
of the stack

• goto[uncovered_s , A] is the new state to push
on the stack when reducing production A ::= b
(after popping handle β and pushing A)

UW CSE 401/M501 Autumn 2024 D-26

Aside: Extra Initial Production

• When we construct the DFA we’ll need to add
a new production to handle end-of-file (i.e.,
end-of-input) correctly

• If S is the start state of the original grammar,
add an initial production S’ ::= S $
– $ represents end-of-file (input)
– Accept when we’ve reduced the input to S and

there is no more input (i.e., lookahead is $)

UW CSE 401/M501 Autumn 2024 D-27

Reminder: DFA for

UW CSE 401/M501 Autumn 2024 D-28

0. S ’ ::= S $
1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e

S ::= aABe

accept

S

0

LR Parse Table

UW CSE 401/M501 Autumn 2024 D-29

State
action goto

a b c d e $ A B S
0 acc
1 s2 g0
2 s4 g3
3 s6 s5 g8
4 r3 r3 r3 r3 r3 r3
5 r4 r4 r4 r4 r4 r4
6 s7
7 r2 r2 r2 r2 r2 r2
8 s9
9 r1 r1 r1 r1 r1 r1

0. S ’ ::= S $
1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e

S ::= aABe

accept

S

0

LR Parsing Algorithm

word = scanner.getToken();
while (true) {
 s = top of stack;
 if (action[s, word] = si) {
 push word; push i (state);
 word = scanner.getToken();
 } else if (action[s, word] = rj) {
 pop 2 * length of right side of
 production j (2*|b|);
 uncovered_s = top of stack;
 push left side A of production j ;
 push state goto[uncovered_s, A];
 }

UW CSE 401/M501 Autumn 2024 D-30

} else if (action[s, word] = accept) {
 return;
} else {
 // no entry in action table
 report syntax error;
 halt or attempt recovery;
}

Example
Stack Input
$1 abbcde$ S

action goto

a b c d e $ A B S

0 ac

1 s2 g0

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

UW CSE 401/M501 Autumn 2024 D-31

0. S ’ ::= S $
1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e

S ::= aABe

accept

S

0

Example
Stack Input
$1 abbcde$
$1a2 bbcde$
$1a2b4 bcde$
$1a2A3 bcde$
$1a2A3b6 cde$
$1a2A3b6c7 de$
$1a2A3 de$
$1a2A3d5 e$
$1a2A3B8 e$
$1a2A3B8e9 $
$1S0 $

S
action goto

a b c d e $ A B S

0 ac

1 s2 g0

2 s4 g3

3 s6 s5 g8

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 s7

7 r2 r2 r2 r2 r2 r2

8 s9

9 r1 r1 r1 r1 r1 r1

UW CSE 401/M501 Autumn 2024 D-32

0. S ’ ::= S $
1. S ::= aABe
2. A ::= Abc
3. A ::= b
4. B ::= d

1 2 3 6 7

4 5

8 9

start a

A ::= b B ::= d

b d

A b c A ::= Abc

B

e

S ::= aABe

accept

S

0

LR States

• Idea is that each state encodes
– The set of all possible productions that we could

be looking at, given the current state of the parse,
and

– Where we are in the right hand side of each of
those productions

UW CSE 401/M501 Autumn 2024 D-33

Items

• An item is a production with a dot in the right
hand side

• Example: Items for production A ::= X Y
 A ::= . X Y
 A ::= X . Y
 A ::= X Y .
• Idea: The dot represents a position in the

production – partial match to rhs

UW CSE 401/M501 Autumn 2024 D-34

DFA for

UW CSE 401/M501 Autumn 2024 D-35

S’ ::=S $
S ::= aABe
A ::= Abc
A ::= b
B ::= d

S’ ::= .S $
 S ::= .aABe

S ::= a.ABe
A ::= .Abc
A ::= .b

A ::= b.

accept

a

b

S ::= aA.Be
A ::= A.bc
B ::= .d

A

B ::= d.

d

b A ::= Ab.c

A ::= Abc.

c

B
S ::= aAB.e e S ::= aABe.

1

2

4

3

5

6

7

8 9

S ’::= S . $
0

S

Problems with Grammars

• Non-LR grammars cause problems when
constructing an LR parser (that’s how you know it’s not an
LR grammar!)

– Shift-reduce conflicts
– Reduce-reduce conflicts

• i.e., arrive at a situation when two (or more)
conflicting actions are called for

UW CSE 401/M501 Autumn 2024 D-36

Shift-Reduce Conflicts

• Situation: both a shift and a reduce are
possible at a given point in the parse
(equivalently: in a particular state of the DFA)

• Classic example: if-else statement
 S ::= ifthen S | ifthen S else S

UW CSE 401/M501 Autumn 2024 D-37

Parser States for

• State 3 has a shift-
reduce conflict
– Can shift past else into

state 4 (s4)
– Can reduce (r1)

S ::= ifthen S

 (Note: other S ::= . ifthen items
not included in states 2-4 to save
space)

UW CSE 401/M501 Autumn 2024 D-38

1. S ::= ifthen S
2. S ::= ifthen S else S

S ::= . ifthen S
S ::= . ifthen S else S

ifthen

1

S ::= ifthen . S
S ::= ifthen . S else S

S

2

S ::= ifthen S .
S ::= ifthen S . else S

else

3

S ::= ifthen S else . S 4

Solving Shift-Reduce Conflicts

• Option 1: Fix the grammar
– Done in Java reference grammar, others

• Option 2: Use a parse tool with a “longest
match” rule – i.e., if there is a conflict, choose
to shift instead of reduce
– Does exactly what we want for if-else case
– Guideline: a few shift-reduce conflicts are fine, but

be sure they do what you want (and that this
behavior is guaranteed by the tool specification)

UW CSE 401/M501 Autumn 2024 D-39

Reduce-Reduce Conflicts

• Situation: two different reductions are
possible in a given state

• Contrived example
 S ::= A
 S ::= B
 A ::= x
 B ::= x

UW CSE 401/M501 Autumn 2024 D-40

Parser States for

• State 2 has a reduce-
reduce conflict (r3, r4)

UW CSE 401/M501 Autumn 2024 D-41

S ::= .A
S ::= .B
A ::= .x
B ::= .x

x

1

A ::= x.
B ::= x.

2

1. S ::= A
2. S ::= B
3. A ::= x
4. B ::= x

Handling Reduce-Reduce Conflicts

• These normally indicate a serious problem
with the grammar.

• Fixes
– Use a different kind of parser generator that takes

lookahead information into account when
constructing the states
• Most practical tools (Yacc, Bison, CUP, et al) do this

– Fix the grammar

UW CSE 401/M501 Autumn 2024 D-42

Another Reduce-Reduce Conflict

• Suppose the grammar tries to separate
arithmetic and boolean expressions

 expr ::= aexp | bexp
 aexp ::= aexp * aident | aident
 bexp ::= bexp && bident | bident
 aident ::= id
 bident ::= id

• This will create a reduce-reduce conflict state
with items [aident ::= id . , bident ::= id .]

UW CSE 401/M501 Autumn 2024 D-43

Covering Grammars

• A solution is to merge aident and bident into a single
non-terminal (basically use id in place of aident and
bident everywhere they appear)

• This is a covering grammar
– Will generate some programs that are not generated by

the original grammar
– Use the type checker or other static semantic analysis to

weed out illegal programs later

UW CSE 401/M501 Autumn 2024 D-44

Coming Attractions

• Constructing LR tables
– We’ll present a simple version (SLR(0)) in lecture,

then talk about extending it to LR(1) and then a
little bit about how this relates to LALR(1) used in
most parser generators – the basic ideas behind
the construction algorithm and set of states are
the same for all of these

• LL parsers and recursive descent
• Continue reading ch. 3

UW CSE 401/M501 Autumn 2024 D-45

