
CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 1 of 10

Question 1. (18 points) Regular expressions and DFAs. A decimal fixed-point number is
similar to a floating-point number in that it has a decimal integer part and an optional
decimal fraction. Unlike a floating-point number, it does not have an exponent. For this
problem, decimal fixed-point numbers are strings n.f consisting of an integer n and an
optional fractional part .f with the following properties:

• The integer part n is required and may not have any leading zeros, unless it is the
number 0 itself.

• The fractional part is optional. If it is present (.f) it may not have any trailing 0’s.
• If a decimal point is present, meaning the number has both an integer and a

fractional part, then there must be at least one digit before the decimal point and
one digit after it.

Examples of strings that are legal decimal fixed-point numbers according to these rules:
0, 0.1 , 17 , 1.23 , 101010 , 101010.010101 , 9080.706 , 3.14159 , 401.501 .

Examples of strings that are not legal decimal fixed-point numbers according to these
rules: 17.0 (trailing 0 in fractional part), 0.0 (trailing 0 in fractional part), 401.5010
(trailing 0 in fractional part), 01.23 (leading 0 in integer part), .1 (no integer part), 17.
(no digits after the decimal point .).

 (continued

 on

 next

 page)

 ⇩	

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 2 of 10

Question 1 (cont.) (a) (8 points) Give a regular expression that generates all strings that
are legal decimal fixed-point numbers according to the rules on the previous page.

Fine print: You must restrict yourself to the basic regular expression operations covered in class and
on homework assignments: rs , r|s , r* , r+ , r?, character classes like [a-cxy] and [^aeiou],
abbreviations name=regexp, and parenthesized regular expressions. No additional operations that
might be found in the “regexp” packages in various Unix programs, scanner generators like JFlex, or
programming language libraries are allowed.

 ([1-9][0-9]* | 0) (. [0-9]*[1-9])?

(b) (10 points) Draw a DFA that accepts all valid decimal fixed-point numbers described
above and generated by the regular expression from part (a).

[0-9]

0

[1-9]

•

[1-9]

[1-9][1-9]

• 0

0

0

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 3 of 10

Question 2. (12 points) Scanners. A scanner for MiniJava should be able to process any
text input, even if it contains something other than a legal MiniJava program. It should
report errors if it encounters input characters that do not form proper MiniJava tokens.

What happens if we use a scanner for MiniJava to process the following input?

 public void f(string s) {
 /* int i;
 /* int[] */ arr; */
 return arr[0xffffdc04];
 }

Below, list in order the tokens that would be returned by a scanner for MiniJava as it
reads this input. If there is a lexical error in the input, indicate where that error is
encountered by writing a short explanation of the error in between the valid tokens that
appear before and after the error(s) (something brief like “illegal character %” would be
fine). The token list should include any tokens found after any error(s) in the input, i.e.,
scanning should continue after discovering an error. You may use any reasonable token
names (e.g., LPAREN, ID(x), etc.) as long as your meaning is clear.

A copy of the MiniJava grammar is attached as the last page of the exam. You should
remove it from the exam and use it for reference while you answer this question. You
should assume that the scanner processes MiniJava syntax as defined in that grammar,
with no extensions or changes to the language. Also recall that the MiniJava project
defines an <IDENTIFIER> as a sequence of letters, digits, and underscores, starting with
a letter; uppercase letters are distinguished (different) from lowercase; and an
<INTEGER_LITERAL> is a sequence of decimal digits not starting with 0, or the
number 0 by itself, denoting a decimal integer value.

PUBLIC VOID ID(f) LPAREN ID(string) ID(s) RPAREN LBRACE

ID(arr) SEMICOLON MUL Illegal character ‘/’

RETURN ID(arr) LBRACK INT(0) ID(xffffdc04) RBRACK SEMICOLON

RBRACE

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 4 of 10

Question 3. (10 points) Ambiguity. Consider the following grammar for arithmetic
expressions involving addition (+) and exponentiation (**):

 E ::= E + E | E ** E | x

(a) (4 points) Show that this grammar is ambiguous by constructing two different parse
trees for a single string generated by the grammar, with the following restriction: your
string must include at least one occurrence of the ** exponentiation operator.

There are many possible examples. Here’s one.

(b) (6 points) Give an unambiguous grammar that generates the same strings and has the
correct precedence and associativity for expressions involving + and ** using the
following rules: Exponentiation has higher precedence than addition, so x**x+x means
(x**x)+x. Addition is left-associative, so x+x+x means (x+x)+x. Exponentiation is
right-associative, so x**x**x means x**(x**x) (i.e., 𝑥("!)).

 E ::= E + P | P

 P ::= F ** P | F

 F ::= x

Note: it would be fine to omit the non-terminal F and use x directly in the
productions for P. A more general grammar for arithmetic expressions would
probably need the F (factor) nonterminal in order to include numeric constants and
parenthesized expressions like (E) .

E

x ** x + x

E

E

E

x ** x + x

E

EE

E

E

E

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 5 of 10

Question 4. (36 points) The grammar/parser kitchen sink question! Consider the
following grammar. The nonterminal S is the start symbol of the grammar, and the extra
S’ ::= S $ rule needed to handle end-of-file in an LR parser has been added for you.

0. S' ::= S $ ($ is EOF)
1. S ::= a X
2. S ::= b

3. X ::= S a Y
4. Y ::= b c
5. Y ::= b S

(a) (16 points) Draw the LR(0) state machine for this grammar. When you finish, you
should number the states in the final diagram in whatever order you wish so that you can
use the state numbers in later parts of this question. The state numbers should be
successive integers starting with 0, 1, 2, 3, ….

(continued on next page)

S’ ::= . S $
S ::= . a X
S ::= . b

1

S’::= S . $
0

Y

S ::= a X .
4

X ::= S a . Y
Y ::= . b c
Y ::= . b S

6
S ::= b .

2

X ::= S a Y .
7

b

S ::= a . X
X ::= . S a Y
S ::= . a X
S ::= . b

3

X ::= S . a Y
5a

X

Y ::= b . c
Y ::= b . S
S ::= . a X
S ::= . b

8
Y ::= b c .

9

Y ::= b S .
10

a

a

a

b
b

b

c

S

S

S

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 6 of 10

Question 4. (cont.) Grammar repeated from previous page for reference:

0. S' ::= S $ ($ is EOF)
1. S ::= a X
2. S ::= b

3. X ::= S a Y
4. Y ::= b c
5. Y ::= b S

(b) (8 points) Write the LR(0) parser table for the LR parser DFA shown in your answer
to part (a). To save time, an empty table is provided below. However, it probably has
more rows than you need. Use only as many rows as needed and leave the rest blank.

State # a b c $ S X Y

0 acc

1 s3 s2 g0

2 r2 r2 r2 r2

3 s3 s2 g5 g4

4 r1 r1 r1 r1

5 s6

6 s8 g7

7 r3 r3 r3 r3

8 s3 s2 s9 g10

9 r4 r4 r4 r4

10 r5 r5 r5 r5

11

12

13

14

15

(continued on next page)

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 7 of 10

Question 4. (cont.) Grammar repeated from previous pages for reference:

0. S' ::= S $ ($ is EOF)
1. S ::= a X
2. S ::= b

3. X ::= S a Y
4. Y ::= b c
5. Y ::= b S

(c) (3 points) Is this grammar LR(0)? Explain why or why not. Your answer should
describe all of the problems that exist if the grammar is not LR(0) by identifying the
relevant state number(s) in your answers to parts (a) and (b) and the specific issues in
those state(s) (i.e., something like “state 47 has a shift-reduce conflict if the next input is
blah”, but with, of course, correct state numbers and details from your parser). If the
grammar is LR(0), you should give a technical explanation why it is (this can be brief).

Yes. There are no shift-reduce or reduce-reduce conflicts in any of the parser states.

(d) (6 points) Complete the following table showing the FIRST and FOLLOW sets and
nullable for each of the nonterminals in this grammar. You should include $ (the end-of-
file marker) in the FOLLOW set for any nonterminal where it is appropriate.

 FIRST FOLLOW nullable

S a, b a, $ no

X a, b a, $ no

Y b a, $ no

(e) (3 points) Is this grammar SLR? Give a brief technical explanation why or why not.

Yes. Since the grammar is LR(0) it is also SLR.

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 8 of 10

Question 5. (8 points) Top-down parsing. Take another look at the grammar from the
previous problem, but omitting the S’ ::= S $ rule that was added for LR parsing:

1. S ::= a X
2. S ::= b
3. X ::= S a Y

4. Y ::= b c
5. Y ::= b S

(Recall that S is the start symbol for this grammar.)

Is this grammar suitable for constructing a top-down LL(1) predictive parser? If so,
explain why. If not, explain why not, and, if possible, construct a different grammar that
generates the same language that is suitable for a top-down LL(1) predictive parser, or
explain why this can’t be done. (You might find the FIRST/FOLLOW/Nullable
information from the previous problem useful in answering this question.)

No. The two productions for Y both have b as the first symbol of their right-hand
sides.

To fix this, replace rules 4 and 5 with

 Y ::= b Ytail

 Ytail ::= c | S

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 9 of 10

Question 6. (14 points) Semantics. Python includes a convenient operator for checking
whether an integer value occurs in an integer array. The expression e1 in e2 evaluates to
true if the int value e1 occurs in array e2, and false otherwise. Suppose we add this in
operator to our MiniJava language without making any other changes to the language,
and then we encounter the following statement in our new version of MiniJava:

 while (i in arr) { i = i + 1; }

(a) (7 points) At the bottom of this page, draw an abstract syntax tree (AST) for this loop.
You should use appropriate names for the AST nodes, and have an appropriate level of
abstraction and structural detail similar to the AST nodes in the MiniJava project AST
classes, but don’t worry about matching the exact names or details of classes or nodes
found in the MiniJava starter code.

(b) (7 points) Annotate your AST by writing next to the appropriate nodes the checks or
tests that should be done in the static semantics/type-checking phase of the compiler to
ensure that this statement does not contain errors. If a particular check or test applies to
multiple nodes, you can write it once and indicate which nodes it applies to, as long as
your meaning is clear and readable.

while

in

+

INT:1

Check: left operand is an int,
right operand is an array of
int. Result type is boolean.

Check: first operand
has type boolean

Check: left operand is a storable
location (lvalue) and type of left
operand is assignment compatible
with type of right operand

ID:iCheck: all identifier nodes (a, arr, i) are
visible in current scope. Result type of
identifier is the type in its declaration.

result type of int
constant node is int

=

ID:i ID:arr

Check: operands (i, 1) have types that
can be added by +. Result type of +
node is int since operand types are int

ID:i

CSE 401/M501 24au Midterm Exam 11/1/24 Sample Solution

 Page 10 of 10

Question 7. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

🙂

(b) (1 points) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

