
 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 1 of 12

Name _____________________________________ UW netid ____________@uw.edu

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed books, closed notes, closed electronics. However, you may have one
5x8 notecard for reference with any hand-written information you wish on both sides.
Please turn off all cell phones, personal electronics, alarm watches, and pagers, and return
your tray tables and seat backs to their full upright, locked positions. Sound or video
recording and the taking of photographs is prohibited.

If you have a question during the exam, please raise your hand and someone will come to
help you.

There are extra blank pages at the end of the exam you can use if your answer(s) do
not fit in the space provided. Please indicate on the original page(s) if your answer(s)
is(are) continued on that last page.

After the blank page with extra space for answers is a copy of the MiniJava grammar.
You should remove this from the exam and use it for reference as needed.

Please wait to turn the page until everyone is told to begin.

Score _________________

1 _______ / 18

2 _______ / 10

3 _______ / 14

4 _______ / 40

5 _______ / 16

6 _______ / 2

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 2 of 12

Question 1. (18 points) Regular expressions and DFAs. In the US, currency amounts are
normally written with a leading $, one or more digits, optionally with one or more
leading 0’s, giving the number of dollars, and, optionally following that, a decimal point
with two digits giving the number of cents. If there are more than 3 digits in the dollar
part, they are separated into groups of three digits with commas, counting from the right.

Examples of legal strings using these rules: $1, $01, $1,234.56, $17.42, $1.23, $01.23,
$00,017.42, $12, $12.50, $1,024, $8,820,000,000 .

Examples of illegal strings: 1.23 (no leading $), $12.5 (only one digit after decimal
point), $12,34.56 (must be a group of three digits after each “,”), $.17 (no digit before
the “.”), $1234.56 (leading digits not separated into groups of 3 with commas), $1.235
(more than 2 digits after “.”).

(a) (9 points) Give a regular expression that generates all strings that are legal currency
amounts according to these rules.

Fine print: You must restrict yourself to the basic regular expression operations covered in class and
on homework assignments: rs , r|s , r* , r+ , r?, character classes like [a-cxy] and [^aeiou],
abbreviations name=regexp, and parenthesized regular expressions. No additional operations that
might be found in the “regexp” packages in various Unix programs, scanner generators like JFlex, or
programming language libraries are allowed.

(continued on next page)

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 3 of 12

Question 1 (cont.) (b) (9 points) Draw a DFA that accepts all valid currency strings
described above and generated by the regular expression from part (a).

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 4 of 12

Question 2. (10 points) Scanners. A scanner ought to be able to process any sort of text
input, regardless of whether the file contents are actually a program in the language the
scanner was intended to process.

What happens if we use a scanner for MiniJava to process the following input (which was
taken from the Haskell programming language website)?

 [x | x <- xs, x `mod` p /= 0]

Note that the punctuation marks surrounding mod above are backquotes (reverse quotes).

Below, list in order the tokens that would be returned by a scanner for MiniJava as it
reads this input. If there is a lexical error in the input, indicate where that error is
encountered by writing a short explanation of the error in between the valid tokens that
appear before and after the error(s) (something brief like “illegal character @” would be
fine). The token list should include any tokens found after any error(s) in the input, i.e.,
scanning should continue after discovering an error. You may use any reasonable token
names (e.g., LPAREN, ID(x), etc.) as long as your meaning is clear.

A copy of the MiniJava grammar is attached as the last page of the test. You should
remove it from the exam and use it for reference while you answer this question. You
should assume that the scanner processes MiniJava syntax as defined in that grammar,
with no extensions or changes to the language.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 5 of 12

Question 3. (14 points) Ambiguity. The classic Unix/Linux typesetting system includes a
program named eqn to format equations. The input to eqn describing equations with
subscripts and superscripts is given by the following grammar:

 E ::= E sub E
 E ::= E sup E
 E ::= x

The sup operator designates superscripts while sub designates subscripts. So,
x sub x is typeset as xx, while x sup x is xx.

Is this grammar ambiguous? If so, give a proof that it is by showing two distinct parse
trees or two different leftmost (or two different rightmost) derivations for some string
generated by the grammar. If not, give an informal, but precise, argument why it is not
ambiguous.

Notes: whitespace in the grammar is only for readability and is not part of the grammar or
the strings generated by it. Each of the words like sub or sup in a grammar production
should be treated as a single terminal symbol, not as individual letters.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 6 of 12

Question 4. (40 points) The “OMG! Not this again!!” parsing question (but with a
surprise twist at the end!). One of the summer interns has decided that programming
languages would be better if they did not contain reserved words that cannot be used as
identifiers. After all, why shouldn’t someone be able to have variables named while or
for in a program?

To see what the implications of this might be, the following is a grammar for a very small
language with a conditional and assignment statement, and expressions that consist of
identifiers. The terminal symbol if can be used as an identifier, and it also appears at
the beginning of a conditional statement. The extra Stmt' ::= Stmt $ rule needed to handle
end-of-file in an LR parser has been added for you. As is usual, whitespace in the
grammar is only for readability and is not part of the grammar or the strings generated by
it. Terminal symbols like if are single symbols, not strings of letters.

0. Stmt' ::= Stmt $ ($ is EOF)
1. Stmt ::= if Exp Stmt
2. Stmt ::= Id = Exp

3. Exp ::= Id
4. Id ::= if

(a) (16 points) Draw the LR(0) state machine for this grammar. When you finish, you
should number the states in the final diagram in whatever order you wish so that you can
use the state numbers in later parts of this question.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 7 of 12

Question 4. (cont.) Grammar repeated from previous page for reference:

0. Stmt' ::= Stmt $ ($ is EOF)
1. Stmt ::= if Exp Stmt
2. Stmt ::= Id = Exp

3. Exp ::= Id
4. Id ::= if

(b) (8 points) Write the LR(0) parser tables for the LR parser in your answer to part (a).

(c) (3 points) Is this grammar LR(0)? Explain why or why not. Your answer should
describe all of the problems that exist if the grammar is not LR(0) by identifying the
relevant state number(s) in your answers to parts (a) and (b) and the specific issues in
those state(s) (i.e., something like “state 47 has a shift-reduce conflict if the next input is
foo”, but with, of course, state numbers and correct details from your parser). If the
grammar is LR(0), you should explain why (this can be brief).

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 8 of 12

Question 4. (cont.) Grammar repeated from previous page for reference:

0. Stmt' ::= Stmt $ ($ is EOF)
1. Stmt ::= if Exp Stmt
2. Stmt ::= Id = Exp

3. Exp ::= Id
4. Id ::= if

(d) (6 points) Complete the following table showing the FIRST and FOLLOW sets and
nullable for each of the non-terminals in this grammar. You should include $ (the end-of-
file marker) in the FOLLOW set for any non-terminal where it is appropriate.

 FIRST FOLLOW nullable

Stmt

Exp

Id

(e) (3 points) Is this grammar SLR? Explain why or why not.

(f) (4 points) (The surprise!) Is the grammar given above, but omitting the
Stmt' ::= Stmt $ rule that was added for LR parsing, suitable for constructing a top-down
LL(1) predictive parser? If it is, your answer should give a technical explanation why it
is. If not, your answer should give a technical explanation describing the problem or
problems with this particular grammar that prevent it from being suitable for a LL(1)
predictive parser.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 9 of 12

Question 5. (16 points) Semantics. We would like to add a for-each loop to MiniJava to
provide a more compact way to process MiniJava arrays. Here is a program fragment
that uses this new loop to print the results of calling method x.f(n)for each of the
integer elements n of the array nums (recall that the int n at the beginning of the loop
is the declaration of n as a variable local to the loop, and since MiniJava only has arrays
with int values, this is the only possible type for the local variable in this loop):

 for (int n: nums) System.out.println(x.f(n));

(a) (8 points) Draw an abstract syntax tree (AST) for this statement and its children at the
bottom of this page. You should use appropriate names for the AST nodes, and have an
appropriate level of abstraction and structural detail similar to the AST nodes in the
MiniJava project AST classes, but don’t worry about matching the exact names or details
of classes or nodes found in the MiniJava code.

(b) (8 points) Annotate your AST by writing next to the appropriate nodes the checks or
tests that should be done in the static semantics/type-checking phase of the compiler to
ensure that this statement does not contain errors. If a particular check or test applies to
multiple nodes, you can write it once and indicate which nodes it applies to, as long as
your meaning is clear and readable. You may assume that int is the only numeric type
in MiniJava, but remember that MiniJava also has boolean and object (class) types.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 10 of 12

Question 6. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

(b) (1 points) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 11 of 12

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 401/M501 23sp Midterm Exam 5/5/23

 Page 12 of 12

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

