
CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 1 of 17

Question 1. (14 points) A bit of x86-64 coding. Here is a small C function that has three integer
parameters and returns the largest value of the three. We assume that there is a 2-argument max
function that returns the largest of its arguments, and it is used by the max3 function.

int max(int x, int y); // defined elsewhere

int max3(int a, int b, int c) {
 return max(a, max(b, c));
}

On the next page, translate this function into x86-64 assembly language. You should use the standard
x86-64 runtime conventions for parameter passing, register usage, and so forth that we used in the
MiniJava project, including using %rbp as a stack frame pointer in the function prologue code. Note
that this is simple C code, not a Java method, so there is no this pointer or method vtable involved.
Also note that we assume the function max exists and we can call it, but you do not have to define that
function or provide its code.

Reference and ground rules for x86-64 code, (same as for the MiniJava project and other x86-64 code):
• All values, including pointers and ints, are 64 bits (8 bytes) each, as in MiniJava
• You must use the Linux/gcc assembly language, and must follow the x86-64 function call,

register, and stack frame conventions:
o Argument registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 in that order
o Called function must save and restore %rbx, %rbp, and %r12-%r15 if these are

used in the function
o Function result returned in %rax
o %rsp must be aligned on a 16-byte boundary when a call instruction is executed
o %rbp must be used as the base pointer (frame pointer) register for this question

• The full form of a memory address is constant(%rbase,%rindex,scalefactor), which references
memory address %rbase+%rindex*scalefactor+constant. scalefactor must be 0, 2, 4, or 8.

• Your x86-64 code must implement all of the statements in the original function. You may not
rewrite the code into a different form that produces equivalent results (i.e., restructuring or
reordering the code or eliminating function calls). Other than that, you can use any reasonable
x86-64 code that follows the standard function call and register conventions – you do not need
to mimic the code produced by your MiniJava compiler.

• Please include brief comments in your code to help us understand what the code is supposed to
be doing (which will help us assign partial credit if it doesn’t do exactly what you intended.)

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 2 of 17

Question 1. (cont.) Write your x86-64 translation of function max3 below. Remember to read and
follow the above ground rules carefully, including managing registers properly and using the correct
argument registers for function calls. Brief comments are appreciated. Original code repeated below for
convenience:

int max(int x, int y); // defined elsewhere

int max3(int a, int b, int c) {
 return max(a, max(b, c));
}

input argument registers: %rdi a, %rsi b, %rdx c

max3: pushq %rbp # function prologue

 movq %rsp,%rbp

 subq $16,%rsp # allocate space to save a
 # (size must be a multiple of 16)

 movq %rdi,-8(%rbp) # save a in stack frame

 # call max(b, c)

 movq %rsi,%rdi # first argument b

 movq %rdx,%rsi # second argument c

 call max # max(b,c), result in %rax
 # call max(a, result)

 movq -8(%rbp),%rdi # first argument a

 movq %rax,%rsi # second argument result of first call

 call max # compute final result in %rax

 movq %rbp,%rsp # function epilog (could use leave instead)

 popq %rbp

 ret

Note: The main thing to be careful about here is to be sure the arguments are in the correct registers,
and also to be sure to save a in memory during the first call to max, since all argument registers are
potentially clobbered on a function call, and we cannot depend on any of them retaining their original
values.

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 3 of 17

Question 2. (24 points) Compiler hacking. One of our big customers has gotten tired of writing while
loops to iterate through integer values. They have asked us to add a “counting loop” that executes a
statement repeatedly with an integer variable taking on successive integer values (i.e., not a general
for loop as found in Java, C, C++, and many other languages). The new loop adds the following
production to the MiniJava grammar:

 Statement ::= “for” Identifier “from” Expression “to” Expression “do” Statement

(A copy of the original MiniJava grammar is included at the end of the exam. You should remove it for
reference while working on this problem.)

The idea is that the Statement in the loop body is executed repeatedly with the Identifier assigned
successive integer values starting with the value of the first Expression and increasing by 1 each time the
loop repeats until the final iteration where the Identifier has the value of the second Expression. For
example, the following code stores the value 1 + 2 + … + 10 in variable sum:

 sum = 0;
 for i from 1 to 10 do sum = sum + i;

The Identifier in the for statement must have been declared previously and must have type int. The
two Expressions are only evaluated once, before the Identifier is assigned its initial value and before the
loop body executes. The Expressions are not re-evaluated again as the loop executes. So, for example,
the following code has exactly the same effect as the previous example:

 sum = 0; i = 0;
 for i from i+1 to i+10 do sum = sum + i;

In other words, the loop bounds i+1 and i+10 are evaluated before the loop begins execution and before
the initial assignment to i, and are not reevaluated again. The Expressions are evaluated in order from
left to right. If the value of the first Expression is greater than the value of the second Expression, then
the body of the loop is not executed. The value in the loop variable is not defined after the loop
terminates – it might be equal to the value of one of the Expressions, or it could have any other value
depending on what the implementation does.

Answer the questions below about how this new loop would be added to a MiniJava compiler. There is
likely way more space than you will need for some of the answers. The full MiniJava grammar is
attached at the end of the exam if you need to refer to it.

(a) (2 points) What new lexical tokens, if any, need to be added to the scanner and parser of our
MiniJava compiler to add this new kind of statement to the original MiniJava language? Just describe
any necessary changes and new token name(s) needed. You don’t need to give JFlex or CUP
specifications or code, but you will need to use any token name(s) you write here in a later part of this
question.

We need tokens for the four new keywords: FOR, FROM, TO, and DO

(continued on next page)

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 4 of 17

Question 2. (cont.) (b) (5 points) Complete the following new AST class to define an AST node type for
the new loop. You only need to define instance variables and the constructor. Assume that all
appropriate package and import declarations are supplied, and don’t worry about visitor code.

(Hint: recall that the AST package in MiniJava contains the following key classes: ASTNode,
Exp extends ASTNode, and Statement extends ASTNode. Also remember that each AST
node constructor has a Location parameter, and the supplied super(pos); statement at the
beginning of the For constructor below is used to properly initialize the superclass with this
information.)

public class For extends Statement {
 // add any needed instance variables below

 public Identifier id;

 public Exp e1, e2;

 public Statement s;

 // constructor – add parameters and method body below

 public For (Identifier id,Exp e1,Exp e2,Statement s,Location pos){

 super(pos); // initialize location information in superclass

 this.id = id;

 this.e1 = e1;

 this.e2 = e2;

 this.s = s;

f
 }
}
Note: Constructor parameters could be in a different order as long as that order matches the AST
node creation code in the CUP semantic action for the new comparison operator, below.

(continued on next page)

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 5 of 17

Question 2. (cont.) (c) (5 points) Complete the CUP specification below to define a production for the
new loop statement including associated semantic action(s) needed to parse the new statement and
create an appropriate AST node (as defined in part (b) above). You should use any new lexical tokens
defined in your answer to part (a) as needed. Use reasonable names for any other lexical tokens needed
that already would exist in the compiler scanner and parser if you need them. We have added
additional code to the parser rule for Statement below so the CUP specification for the loop can be
written as an independent grammar rule with separate semantic actions.

Hint: recall that the Location of an item foo in a CUP grammar production can be referenced as
fooxleft.

Statement ::= ...
 | ForStatement:s {: RESULT = s; :}
 ...
 ;
ForStatement ::= FOR Identifier:i FROM Exp:e1 TO EXP:e2 DO

 Statement: s

 {: RESULT = new For(i,e1,e2,s,ixleft); :}

(d) (4 points) Describe the checks that would be needed in the semantics/type-checking part of the
compiler to verify that a program containing this new loop is legal. You do not need to give code for a
visitor method or anything like that – just describe what language rules (if any) need to be checked for
this new loop.

• Verify that the for variable has been declared and has type int

• Verify that expressions e1 and e2 have type int

(continued on next page)

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 6 of 17

Question 2. (cont.) (e) (8 points) Describe the x86-64 code shape for this new for statement that
would be generated by a MiniJava compiler. Your answer should be similar in format to the descriptions
we used in class for other language constructs. If needed, you should assume that the code generated
for an expression will leave the value of that expression in %rax, as we did in the MiniJava project.

Use Linux/gcc x86-64 instructions and assembler syntax when needed. However, remember that the
question is asking for the code shape for this new statement, so using things like Jfalse, for example,
to indicate control flow, instead of pure x86-64 machine instructions, is fine as long as the meaning is
clear. If you need to make any additional assumptions about code generated by the rest of the compiler
you should state them.

Hint: be sure that your code follows the described operation and semantics of the new for statement
precisely.

This answer uses a strategy similar to the code shape outlined for our MiniJava compilers. Values are
pushed on the stack to save them if they will be needed later. The code arranges for the value of the
second expression (the limit) to be stored on the top of the stack when the statement that makes up
the loop body is executed. We are also careful to evaluate both loop expressions before assigning to
the loop variable. We also assume the loop variable is a local variable in the stack frame. The code
could be generalized to allow the loop variable to be elsewhere but this shows the key ideas. Other
reasonable pseudo-code was fine if done correctly.

 <code to evaluate first expression e1 and leave value in %rax>
 pushq %rax # save initial expression value
 <code to evaluate second expression e2 and leave value in %rax>
 popq %rdx # reload initial expression value
 movq %rdx,offsetvar(%rbp) # store initial expression in loop variable
 pushq %rax # save second expression on top of stack
test:
 movq offsetvar(%rbp),%rax # load variable into %rax
 popq %rdx # load limit into %rdx
 cmpq %rdx,%rax # set cond codes with var - limit
 jg done # exit if var-limit > 0, i.e., var > limit
 pushq %rdx # push limit back on stack
 <code for loop body statement>
 movq offsetvar(%rbp),%rax # increment variable by 1
 addq $1,%rax
 movq %rax,offsetvar(%rbp)
 jmp test # repeat loop
done: # end of loop; second (limit) expression already
 # popped from stack just before jump to done:

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 7 of 17

Question 3. (10 points) vtables. Suppose we have the following four classes in a MiniJava program.

class Shape {
 double area() { return 0.0; }
 String describe() { return "Shape"; }
}

class Polygon extends Shape {
 int nSides() { return 4; }
 void rotate(double degrees) { }
}

class Triangle extends Polygon {
 String describe() { return "Triangle"; }
 double area() { return 17.0; }
 int nSides() { return 3; }
}

class Circle extends Shape {
 String describe() { return "Circle"; }
 void expand(double factor) { }
 double area() { return 3.14; }
}

(Obviously, the values returned by the methods are of no significance – they were just included above to
be sure the code was syntactically correct.)

When class Shape was compiled, the compiler picked the following vtable layout for the class:

Below, show appropriate vtable layouts for the remaining classes, in the same format used above for
class Shape. Be sure to properly account for inherited methods in the vtable layouts. There is at least
one correct solution. If there are different possible solutions, any one is acceptable.

Notes: the first two slots in all vtables must match Shape (area, describe). The first four slots in
Triangle must match the method order in Polygon.

 Vtable layout offset
Shape$$: .quad 0 # no superclass
 .quad Shape$area # +8
 .quad Shape$describe # +16

 Vtable layout offset
Polygon$$: .quad Shape$$ # superclass
 .quad Shape$area # +8
 .quad Shape$describe # +16
 .quad Polygon$nsides # +24
 .quad Polygon$rotate # +32

 Vtable layout offset
Triangle$$: .quad Polygon$$ # superclass
 .quad Triangle$area # +8
 .quad Triangle$describe # +16
 .quad Triangle$nsides # +24
 .quad Polygon$rotate # +32

 Vtable layout offset
Circle$$: .quad Shape$$ # superclass
 .quad Circle$area # +8
 .quad Circle$describe # +16
 .quad Circle$expand # +24

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 8 of 17

The next two questions concern the following control flow graph:

Question 4. (18 points) Dataflow analysis – available expressions. Recall from lecture that an
expression e is available at a program point p if every path leading to point p contains a prior definition
of expression e and e is not killed along a path from a prior definition by having one of its operands re-
defined on that path.

We would like to compute the set of available expressions at the beginning of each basic block in the
flowgraph shown above. For each basic block b we define the following sets:

 AVAIL(b) = the set of expressions available on entry to block b

 NKILL(b) = the set of expressions not killed in b (i.e., all expressions defined somewhere in the
flowgraph except for those killed in b)

 DEF(b) = the set of all expressions defined in b and not subsequently killed in b

The dataflow equation relating these sets is

 AVAIL(b) = ∩x ∈ preds(b) (DEF(x) ∪ (AVAIL(x) ∩ NKILL(x)))

i.e., the expressions available on entry to block b are the intersection of the sets of expressions available
on exit from all of its predecessor blocks x in the flow graph.

On the next page, calculate the DEF and NKILL sets for each block, then use that information to calculate
the AVAIL sets for each block. You will only need to calculate the DEF and NKILL sets once for each
block. You may need to re-calculate some of the AVAIL sets more than once as information about
predecessor blocks changes.

Hint: notice that there are only two expressions calculated in this flowgraph: a+b, and b+c. So all of the
AVAIL, NKILL, and DEF sets for the different blocks will contain some, none, or both of these expressions.

a = 17
b = 42
c = a + b

a = b + c
d = a + b

b = a + b
d = b + c

B0

B1 B2

a = b + c
print(a)

B3

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 9 of 17

Question 4. (cont). Graph and definitions repeated from previous page:

 AVAIL(b) = expressions available on entry to block b
 NKILL(b) = expressions not killed in b
 DEF(b) = expressions defined in b and not subsequently killed in b

 AVAIL(b) = ∩x ∈ preds(b) (DEF(x) ∪ (AVAIL(x) ∩ NKILL(x)))

(a) (8 points) For each of the blocks B0, B1, B2, and B3, write their DEF and NKILL sets in the table below.

Block DEF NKILL

B0 { a + b } ∅	

B1 { b + c } ∅

B2 { a + b, b + c } { b + c }

B3 { b + c } { b + c }

(b) (8 points) Now, in the table below, give the AVAIL sets showing the expressions available on entry to
each block. If you need to update this information as you calculate the sets, be sure to cross out
previous information so it is clear what your final answer is.

Block AVAIL

B0 ∅

B1 { a + b }

B2 ∅

B3 { a + b, b + c }

(c) (2 points) One use of available expression analysis is to detect when an expression is available
entering a basic block and does not need to be recalculated when it is used in that block. Are there any
expressions that don’t need to be recalculated because they are available on entry to some block?
Identify each expression and list the block(s) where it does not need to be recalculated, or write none if
there are no redundant calculations.

The expresson a+b is available on entry to B1 and does not need to be recalculated there.
The expression b+c is available on entry to B3 and does not need to be recalculated there.

a = 17
b = 42
c = a + b

a = b + c
d = a + b

b = a + b
d = b + c

B0

B1 B2

a = b + c
print(a)

B3

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 10 of 17

Question 5. (18 points) Dominators and SSA. Here are the basic definitions of dominators and related
concepts we have seen previously in class:

• Every control flow graph has a unique start node s.
• Node x dominates node y if every path from s to y must go through x.

- A node x dominates itself.
• A node x strictly dominates node y if x dominates y and x ≠ y.
• The dominator set of a node y is the set of all nodes x that dominate y.
• An immediate dominator of a node y, idom(y), has the following properties:

- idom(y) strictly dominates y (i.e., dominates y but is different from y)
- idom(y) does not dominate any other strict dominator of y

 A node might not have an immediate dominator. A node has at most one immediate
dominator.

• The dominator tree of a control flow graph is a tree where there is an edge from every node x
to its immediate dominator idom(x).

• The dominance frontier of a node x is the set of all nodes w such that
- x dominates a predecessor of w, but
- x does not strictly dominate w

(a) (8 points) Using the same control flow graph from the previous problem, complete the following
table. List for each node: the node(s) that it dominates, successor nodes to the dominated nodes, and
the nodes that are in its dominance frontier (if any):

Node Nodes dominated by
this node

Successor(s) to nodes dominated
by this node

Dominance Frontier of
this node

B0 B0, B1, B2, B3 B0, B1, B2, B3 B0

B1 B1 B0, B2 B0, B2

B2 B2, B3 B1, B3 B1

B3 B3 ∅ ∅

a = 17
b = 42
c = a + b

a = b + c
d = a + b

b = a + b
d = b + c

B0

B1 B2

a = b + c
print(a)

B3

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 11 of 17

Question 5 (cont.) (b) (10 points) Now redraw the flowgraph in SSA
(static single-assignment) form. You need to insert all Φ-functions that
are required by the dominance frontier criteria, even if some of the
variables created by those functions are not used later. Once that is done,
add appropriate version numbers to all variables that are assigned in the
flowgraph. You do not need to trace the steps of any particular algorithm
to place the Φ-functions as long as you add them to the flowgraph in
appropriate places. Answers that have a couple of extraneous Φ-functions
will receive appropriate partial credit, but answers that, for example, use
a maximal-SSA strategy of placing Φ-functions for all variables at the
beginning of every block will not be looked on with favor.

a = 17
b = 42
c = a + b

a = b + c
d = a + b

b = a + b
d = b + c

B0

B1 B2

a = b + c
print(a)

B3

a1 = Φ(a0,a3)
b1 = Φ(b0,b4)
c1 = Φ(c0,c2)
d1 = Φ(d0,d3)
a2 = 17
b2 = 42
c2 = a2 + b2

a4 = Φ(a2,a3)
b5 = Φ(b2,b4)
d4 = Φ(d1,d3)
a5 = b5 + c2
d5 = a5 + b5

a3 = Φ(a2,a5)
b3 = Φ(b2,b5)
d2 = Φ(d1,d5)
b4 = a3 + b3
d3 = b4 + c2

B0

B1 B2

a6 = b5 + c2
print(a6)

B3

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 12 of 17

The next two questions concern register allocation and instructions scheduling. For both of these
questions, assume that we’re using the same hypothetical machine that was presented in lecture and in
the textbook examples for list scheduling.

The instructions on this example machine are assumed to take the following numbers of cycles each:

Operation Cycles
LOAD 3
STORE 3
ADD 1

MULT 2
SHIFT 1

Our instruction selection algorithm has been modified so it does not re-use registers, but instead just
creates temporaries and leaves register selection for later. Given the statement y = m*x[i]+b; here’s
what the instruction selector generated:

 a. LOAD t1 <- m // t1 = m
 b. LOAD t2 <- x // t2 = address of x[] array
 c. LOAD t3 <- i // t3 = i
 d. SHIFT t4 <- t3, 3 // t4 = i*8 (shift t3 left 3)
 e. ADD t5 <- t2, t4 // t5 = address of x[i]
 f. LOAD t6 <- MEM[t5] // t6 = x[i] – i.e., load from computed address, not a named var
 g. MULT t7 <- t1, t6 // t7 = m*x[i]
 h. LOAD t8 <- b // t8 = b
 i. ADD t9 <- t7+t8 // t9 = m*x[i]+b
 j. STORE y <- t9 // store y

(Note that this code assumes that array variable x contains a pointer to an array, as in Java.)

In a real compiler we would first use list scheduling to pick a (possibly) better order for the instructions,
then use graph coloring to assign temporaries (t1-t9) to actual registers. But for this exam we’re going
to ask those two questions separately so the answers don’t depend on each other, which will make it
much easier to assign credit fairly (J).

Answer the questions about this sequence of code on the next pages.

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 13 of 17

Question 6. (15 points) Forward list scheduling. (a) (8 points) Given the original sequence of instructions
on the previous page for the assignment statement y = m*x[i]+b, draw the precedence graph showing
the dependencies between these instructions. Label each node (instruction) in the graph with the letter
identifying the instruction (a-j) and its latency – the number of cycles between the beginning of that
instruction and the end of the graph on the shortest possible path that respects the dependencies.

(continued on next page)

Operation Cycles

LOAD 3

STORE 3

ADD 1

MULT 2

SHIFT 1

a. LOAD t1 <- m
b. LOAD t2 <- x
c. LOAD t3 <- i
d. SHIFT t4 <- t3, 3
e. ADD t5 <- t2, t4
f. LOAD t6 <- MEM[t5]
g. MULT t7 <- t1, t6
h. LOAD t8 <- b
i. ADD t9 <- t7+t8
j. STORE y <- t9

j

i

hg

a

bd

e

f

3

10

9

14

11 13

c

4

76

9

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 14 of 17

Question 6. (cont) (b) (7 points) Rewrite the instructions in the order they would be chosen by forward
list scheduling. If there is a tie at any step when picking the best instruction to schedule next, pick one
of them arbitrarily. Label each instruction with its letter and instruction operation (LOAD, ADD, etc.)
from the original sequence above and the cycle number on which it begins execution (you do not need
to write all of the instruction operands, just the letter and opcode). The first instruction begins on
cycle 1. You do not need to show your bookkeeping or trace the algorithm as done in class, although if
you leave these clues about what you did, it could be helpful if we need to figure out how to assign
partial credit.

 1. c LOAD

 2. b LOAD

 3. a LOAD

 4. d SHIFT

 5. e ADD

 6. f LOAD

 7. h LOAD

 8. ---

 9. g MULT

 10. ---

 11. I ADD

 12. j STORE

This is the unique correct solution. There are no ties to be broken arbitrarily at any step in the
algorithm.

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 15 of 17

Question 7. (14 points) Register allocation/graph coloring.

(a) (8 points) Draw the interference graph for the temporary variables (t1-t9) in the code on the
previous page (repeated here for convenience). You should assume that the code is executed in the
sequence given and not rearranged before assigning registers.

(b) (6 points) Give an assignment of groups of temporary variables to registers that uses the minimum
number of registers possible based on the information in the interference graph. Use R1, R2, R3, … for
the register names.

 R1: t1, t7, t9

 R2: t2, t5, t6, t8

 R3: t3, t4

There are, of course, some other solutions that assign temporaries to three registers. Any correct
solution received full credit.

a. LOAD t1 <- m
b. LOAD t2 <- x
c. LOAD t3 <- i
d. SHIFT t4 <- t3, 3
e. ADD t5 <- t2, t4
f. LOAD t6 <- MEM[t5]
g. MULT t7 <- t1, t6
h. LOAD t8 <- b
i. ADD t9 <- t7+t8
j. STORE y <- t9

t1

t2

t3

t4

t5

t8

t6

t7

t9

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 16 of 17

To wrap up, a short-answer question.

Question 8. (10 points) Compiler phases. For each of the following situations, indicate where the
situation would normally be discovered or handled in a production compiler. Assume that the compiler
is a conventional one that generates native code for a single target machine (say, x86-64), and assume
that the source language is standard Java (if it matters). Use the following abbreviations for the stages:

scan – scanner
parse – parser
sem – semantics/type check
opt – optimization (dataflow/ssa analysis; code
transformations)
instr – instruction selection & scheduling

reg – register allocation
run – runtime (i.e., when the compiled code is
executed)
can’t – can’t always be done during either
compilation or execution

scan Detect that a comment beginning with /* does not have a matching */ before reaching the end
of the input file.

reg Add extra instructions to temporarily store a value in memory when there aren’t enough
registers available to keep all live values in registers at a given point in the program.

run Detect that in an array reference a[k], the subscript k is out-of-bounds

sem Warn the programmer that an instance variable declaration in a subclass uses the same name as
an instance variable name in a superclass, which can hide (shadow) the superclass variable

sem Report that the * operation cannot be used to combine expressions of type String.

can't Report that a particular pointer (reference) variable p will be null when used.
 (Note that this is asking to determine that some use of p will always be null, which is
 undecidable, as opposed to detecting whether p is null at a particular use during execution)

instr Use the x86-64 addressing modes to calculate x*5 using leaq (%rax,%rax,4),%rax

parse Report that there is an extra “else stmt” clause that is not associated with any previous if.

sem In a method call x.f(a,b,c), verify that the type of x actually does have a visible method f
with the correct number and types of parameters.

opt Remove an instruction from the generated code that stores a value in a variable if that variable
is never subsequently used.

CSE 401/M501 23sp Final Exam 6/6/23 Sample Solution

CSE 401/M501 23sp Final Exam, June 6, 2023 Page 17 of 17

Question 9. (2 free points – all answers get the free points)

Draw a picture of something you are planning to do this summer!
– or –

Draw a picture of one or more of your TAs!

TBD

Have a great summer and best wishes for the future!
The CSE 401/M501 staff

