Dataflow Analysis + Intro to SSA CSE 401/M501

Announcements

- 401 CodeGen hard deadline - SATURDAY 11pm no matter what late days used before. Must commit/push/tag by Sat. 11pm, not later
- 401 report due next Tuesday; M501 project/report due as written on assignment
- HW4 due next Thursday
- No lecture on Friday - extended office hours/work session from 1:30-4:30, CSE 303 (Allen Center)

Review of Optimizations

Review of Optimizations

Peephole
Local
Intraprocedural / Global
Interprocedural

Review of Optimizations

Peephole A few Instructions
Local
Intraprocedural / Global
Interprocedural

Review of Optimizations

Peephole A few Instructions
Local A Basic Block
Intraprocedural / Global
Interprocedural

Review of Optimizations

Peephole A few Instructions
Local A Basic Block
Intraprocedural / Global A Function/Method
Interprocedural

Review of Optimizations

Peephole A few Instructions
Local A Basic Block
Intraprocedural / Global A Function/Method
Interprocedural A Program

Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of "facts"

Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of "facts"
- Just the initial discovery phase
- Changes can then be made to optimize based on the analysis

Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):
- IN(b): facts true on entry to b
- OUT(b): facts true on exit from b
- GEN (b): facts created (and not killed) in b
- KILL(b): facts killed in b

Reaching Definitions (A Dataflow Problem)

"What definitions of each variable might reach this point"

- Could be used for:
- Constant Propagation
- Uninitialized Variables
"x=y", "x=0"

```
int x;
if (y > 0) {
    x = y;
} else {
    x = 0;
}
System.out.println(x);
```


Reaching Definitions (A Dataflow Problem)

"What definitions of each variable might reach this point"

- Be careful: Does not involve the value of the definition
- The dataflow problem "Available Expressions" is designed for that

```
int x;
if (y > 0) {
    x = y;
} else {
    x = 0;
}
y = -1;
```

still: " $x=y ", ~ " x=0 "$ System.out.println(x) ;

Equations for Reaching Definitions

- IN(b): the definitions reaching upon entering block b
- OUT(b): the definitions reaching upon exiting block b
- GEN(b): the definitions assigned and not killed in block b
- KILL (b): the definitions of variables overwritten in block b

$$
\begin{gathered}
\operatorname{IN}(b)=\bigcup_{p \in \operatorname{pred}(b)} \operatorname{OUT}(\mathrm{p}) \\
\operatorname{OUT}(b)=\operatorname{GEN}(b) \cup(\operatorname{IN}(b)-\operatorname{KILL}(b))
\end{gathered}
$$

Problems 1(a) and 1(b)

```
L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c
```

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0					
L1	L1					
L2	L2					
L3	L3					
L4						
L5						

```
L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c
```

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0					
L1	L1					
L2	L2					
L3	L3	L0				
L4						
L5						

```
L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c
```

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
LO	L0					
L1	L1		L0			
L2	L2		L0, L1			
L3	L3	L0	L0, L1, L2			
L4			L1, L2, L3			
L5			L1, L2, L3			

L0: $\quad \mathrm{a}=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $a=b * 2$
L4: if a < N goto L1
L5: return c

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0			L0		
L1	L1		L0	L0, L1		
L2	L2		L0, L1	L0, L1, L2		
L3	L3	L0	L0, L1, L2	L1, L2, L3		
L4			L1, L2, L3	L1, L2, L3		
L5			L1, L2, L3	L1, L2, L3		

L0: $\quad a=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $\quad a=b * 2$
L4: if $a<N$ goto L1
L5: return c

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0			L0		L0
L1	L1		L0	L0, L1	L0, L1, L2, L3	L0, L1, L2, L3
L2	L2		L0, L1	L0, L1, L2	L0, L1, L2, L3	L0, L1, L2, L3
L3	L3	L0	L0, L1, L2	L1, L2, L3	L0, L1, L2, L3	L1, L2, L3
L4			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3
L5			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3

L0: $\quad a=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $\quad a=b * 2$
L4: if $a<N$ goto L1
convergence!

L5: return c

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0			L0		L0
L1	L1		L0	L0, L1	L0, L1, L2, L3	L0, L1, L2, L3
L2	L2		L0, L1	L0, L1, L2	L0, L1, L2, L3	L0, L1, L2, L3
L3	L3	L0	L0, L1, L2	L1, L2, L3	L0, L1, L2, L3	L1, L2, L3
L4			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3
L5			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3

L0: $a=0 \quad$ Is it possible to replace the use of a in block $L 1$ with the
L1: $b=a+1$ constant 0?
L2: $c=c+b$
L3: $a=b * 2$
L4: if a < N goto L1
L5: return c

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
$L 0$	$L 0$			$L 0$		$L 0$
$L 1$	$L 1$		$L 0$	$L 0, L 1$	$L 0, L 1, L 2, L 3$	$L 0, L 1, L 2, L 3$
$L 2$	$L 2$		$L 0, L 1$	$L 0, L 1, L 2$	$L 0, L 1, L 2, L 3$	$L 0, L 1, L 2, L 3$
$L 3$	$L 3$	$L 0$	$L 0, L 1, L 2$	$L 1, L 2, L 3$	$L 0, L 1, L 2, L 3$	$L 1, L 2, L 3$
$L 4$			$L 1, L 2, L 3$			
$L 5$			$L 1, L 2, L 3$			

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
$L 0$	$L 0$			$L 0$		$L 0$
$L 1$	$L 1$		$L 0$	$L 0, L 1$	$L 0, L 1, L 2, L 3$	$L 0, L 1, L 2, L 3$
$L 2$	$L 2$		$L 0, L 1$	$L 0, L 1, L 2$	$L 0, L 1, L 2, L 3$	$L 0, L 1, L 2, L 3$
$L 3$	$L 3$	$L 0$	$L 0, L 1, L 2$	$L 1, L 2, L 3$	$L 0, L 1, L 2, L 3$	$L 1, L 2, L 3$
$L 4$			$L 1, L 2, L 3$			
$L 5$			$L 1, L 2, L 3$			

Phi-Functions

- A way to represent multiple possible values for a certain definition
- Not a "real" instruction - just a form of bookkeeping needed for SSA

Where to place Phi-Functions?

- Wherever a variable has multiple possible definitions entering a block
- Inefficient (and unnecessary!) to consider all possible phi-functions at the start of each block

Example With a Loop

SSA

Notes:
-Loop-back edges are also merge points, so require Φ-functions $\cdot \mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}$ are initial values of a, b, c on entry to initial block ${ }^{-b_{1}}$ is dead - can delete later -c is live on entry either input parameter or uninitialized

Problem 2(a)

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	
1		
2		
3		
4		
5		
6		

A node \mathbf{X} dominates a node \mathbf{Y} iff every path from the entry point of the control flow graph to \mathbf{Y} includes \mathbf{X}.
A node \mathbf{X} strictly dominates a node \mathbf{Y} iff \mathbf{X} dominates \mathbf{Y} and $\mathbf{X} \neq \mathbf{Y}$
Need to go through 0 to get through 1, 2, 3, 4, 5, 6 and 0 cannot strictly dominate itself

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	0
1		
2		
3		
4		
5		
6		

A node \mathbf{Y} is in the dominance frontier of node \mathbf{X} iff \mathbf{X} dominates an immediate predecessor of \mathbf{Y} but \mathbf{X} does not strictly dominate \mathbf{Y}. A node 0 is in the dominance frontier of node 0 iff 0 dominates an immediate predecessor (6) of 0 but 0 does not strictly dominate 0

0 dominates 6, 6 is an immediate predecessor of 0,0 does not strictly dominate 0

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	0
1	\varnothing	
2		
3		
4		
6		

A node \mathbf{X} dominates a node \mathbf{Y} iff every path from the entry point of the control flow graph to \mathbf{Y} includes \mathbf{X}.
A node \mathbf{X} strictly dominates a node \mathbf{Y} iff \mathbf{X} dominates \mathbf{Y} and $\mathbf{X} \neq \mathbf{Y}$
1 does not dominate 6 because there is a path from 5 that doesn't include 1.1 does not strictly dominate itself

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	0
1	\varnothing	1,6
2		
3		
4		
5		
6		

A node \mathbf{Y} is in the dominance frontier of node \mathbf{X} iff \mathbf{X} dominates an immediate predecessor of \mathbf{Y} but \mathbf{X} does not strictly dominate \mathbf{Y}.
$X=1, Y=6,1$ dominates 1,1 is an immediate predecessor of 6,1 does not strictly dominate 6
$\mathrm{X}=1, \mathrm{Y}=1,1$ dominates 1,1 is an immediate predecessor of 1,1 does not strictly dominate 1

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	0
1	\varnothing	1,6
2	$3,4,5$	
3		
4		
5		
6		

A node \mathbf{X} dominates a node \mathbf{Y} iff every path from the entry point of the control flow graph to \mathbf{Y} includes \mathbf{X}.
A node \mathbf{X} strictly dominates a node \mathbf{Y} iff \mathbf{X} dominates \mathbf{Y} and $\mathbf{X} \neq \mathbf{Y}$
Need to go through 2 to get through 3, 4, 5 and 2 cannot strictly dominate itself

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	0
1	\varnothing	1,6
2	$3,4,5$	6
3		
4		
5		
6		
A node Y is in the dominance frontier of node \mathbf{X} iff \mathbf{X} dominates an		
immediate predecessor of Y but X does not strictly dominate Y.		
X $2, Y=6,2$ dominates 5, 5 is an immediate predecessor of 6,2		
does not strictly dominate 6		

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3,4,5,6$	0
1	\varnothing	1,6
2	$3,4,5$	6
3	\varnothing	5
4	\varnothing	5
5	\varnothing	6
6		

5 does not strictly dominate 6 (path through 1) and therefore does not strictly dominate anything else

5 dominates 5,5 is an immediate predecessor of 6, 5 does not strictly dominate 6

Problem 2(b)

Converting to SSA

Compute the dominance frontier of each node

Determine which variables need merging in each node

Assign numbers to definitions and add phi functions

Step 1: Dominance Frontiers

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	$1,2,3$, $4,5,6$	0
1	$\boldsymbol{\varnothing}$	1,6
2	$\mathbf{3}, \mathbf{4}, 5$	6
3	$\boldsymbol{\varnothing}$	5
4	$\boldsymbol{\varnothing}$	5
5	$\boldsymbol{\varnothing}$	6
6		0

Converting to SSA

Compute the dominance frontier of each node

Determine which variables need merging in each node

We will compute using the dominance frontiers

Assign numbers to definitions and add phi functions

Need
c, b

Step 2: Determine Necessary Merges

ITERATION 1: Each node in the dominance frontier of node X will merge any definitions created in node X.

$\mathrm{c}, \mathrm{b}, \mathrm{d}, \mathrm{e}$

Step 2: Determine Necessary Merges

ITERATION 2: Each merge will create a new definition, which may need merging again.

NODE	DOMINANCE FRONTIER
0	0
1	1, 6
2	6
3	5
4	5
5	6
6	0

$$
c, b, d, e
$$

Step 2: Determine Necessary Merges

ITERATION 3: Each merge will create a new definition, which may need merging again.

NODE		DOMINANCE FRONTIER
0		0
1		1, 6
2		6
3		5
4		5
5		6
6	d,e	0

Converting to SSA

Compute the dominance frontier of each node

Determine which variables need merging in each node

Assign numbers to definitions and add phi functions

Place phi functions first, then increment subscripts

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.

Need to merge:
a, b, c, d, e

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.

Note: must merge its own (later) definition because of the back-edge!

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.

Nothing to merge

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.

Nothing to merge

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.

Nothing to merge

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.

$$
B_{5} \begin{aligned}
& \mathrm{d}_{5}=\Phi\left(\mathrm{d}_{3},\right. \\
& \mathrm{e}_{3}=\Phi\left(\mathrm{d}_{4}\right) \\
& \mathrm{c}_{4}=\mathrm{e}_{1}, \\
& \left.\mathrm{~d}_{2}\right) \\
&
\end{aligned}
$$

Need to merge:
d, e

Step 3: Assign Definition Numbers

Merges go first, and each successive definition of a variable should increment its index by 1.
Need to merge:

$$
\boldsymbol{B}_{6} \begin{aligned}
& \mathrm{b}_{3}=\Phi\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right) \\
& \mathrm{c}_{5}=\Phi\left(\begin{array}{ll}
\mathrm{c}_{3}, & \mathrm{c}_{4}
\end{array}\right) \\
& \mathrm{d}_{6}=\Phi\left(\mathrm{d}_{2}, \mathrm{~d}_{5}\right) \\
& \mathrm{e}_{4}=\Phi\left(\mathrm{e}_{1},\right. \\
& \left.\mathrm{e}_{3}\right) \\
& \mathrm{d}_{7}=\mathrm{c}_{5}+\mathrm{b}_{3}
\end{aligned}
$$

b, c, d, e

Solution

