Dataflow Analysis + Intro to SSA

CSE 401/M501

Announcements

- 401 CodeGen hard deadline SATURDAY 11pm no matter what late days used before. Must commit/push/tag by Sat. 11pm, not later
- 401 report due next Tuesday; M501 project/report due as written on assignment
- HW4 due next Thursday
- No lecture on Friday extended office hours/work session from 1:30-4:30, CSE 303 (Allen Center)

11:45-12:45 OH (Rachel) 22 CSE2 150	14:00-15:00 OH (Rachel) 23 zoom	13:00-14:30 OH (John) 24 CSE2 150	Section 25 Dataflow & SSA	12:30-13:30 OH (Randy) 26 CSE2 151+zoom
14:30-15:20 Lecture CSE2 G10 Back end overview; instruction selection		14:30-15:20 Lecture CSE2 G10 Instruction scheduling & register allocation (no	12:30-13:30 OH (Randy) CSE2 151 + zoom 16:30-17:30 OH (Robert) 14:30-15:20 Lecture CSE2 G10 Back end (concl.)	
slides		new slides) 16:30-17:30 OH (Robert) CSE2 152+zoom	CSE2 152 + zoom 23:00 Project: code generation due (401)	15:30-16:30 OH (John) CSE2 151

Peephole

Local

Intraprocedural / Global

Peephole A few Instructions

Local

Intraprocedural / Global

Peephole A few Instructions

Local A Basic Block

Intraprocedural / Global

Peephole A few Instructions

Local A Basic Block

Intraprocedural / Global A Function/Method

Peephole A few Instructions

Local A Basic Block

Intraprocedural / Global A Function/Method

Interprocedural A Program

Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of "facts"

Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of "facts"
- Just the initial discovery phase
 - Changes can then be made to optimize based on the

Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):
 - IN(b): facts true on entry to b
 - OUT(b): facts true on exit from b
 - GEN(b): facts created (and not killed) in b
 - KILL(b): facts killed in b

Reaching Definitions (A Dataflow Problem)

"What definitions of each variable might reach this point"

- Could be used for:
 - Constant Propagation
 - Uninitialized Variables

```
int x;
if (y > 0) {
    x = y;
} else {
    x = 0;
}
System.out.println(x);
```

```
"x=y", "x=0"
```

Reaching Definitions (A Dataflow Problem)

"What definitions of each variable might reach this point"

- **Be careful**: Does not involve the *value* of the definition
 - The dataflow problem
 "Available Expressions"
 is designed for that

```
still: "x=y", "x=0"
```

```
int x;
if (y > 0) {
    x = y;
} else {
    x = 0;
}

y = -1;
System.out.println(x);
```

Equations for Reaching Definitions

- IN(b): the definitions reaching upon entering block b
- OUT(b): the definitions reaching upon exiting block b
- GEN(b): the definitions assigned and not killed in block b
- KILL(b): the definitions of variables overwritten in block b

$$IN(b) = \bigcup_{p \in pred(b)} OUT(p)$$
 $OUT(b) = GEN(b) \cup (IN(b) - KILL(b))$

Problems 1(a) and 1(b)

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
LO	L0					
L1	L1					
L2	L2					
L3	L3					
L4						
L5						

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0					
L1	L1					
L2	L2					
L3	L3	L0				
L4						
L5						

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0					
L1	L1		L0			
L2	L2		L0, L1			
L3	L3	LØ	L0, L1, L2			
L4			L1, L2, L3			
L5			L1, L2, L3			

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0			LØ		
L1	L1		L0	L0, L1		
L2	L2		L0, L1	L0, L1, L2		
L3	L3	L0	L0, L1, L2	L1, L2, L3		
L4			L1, L2, L3	L1, L2, L3		
L5			L1, L2, L3	L1, L2, L3		

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
LO	L0			LØ		LØ
L1	L1		L0	L0, L1	L0, L1, L2, L3	L0, L1, L2, L3
L2	L2		L0, L1	L0, L1, L2	L0, L1, L2, L3	L0, L1, L2, L3
L3	L3	L0	L0, L1, L2	L1, L2, L3	L0, L1, L2, L3	L1, L2, L3
L4			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3
L5			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

L5: return c

Convergence!

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
LO	L0			LØ		L0
L1	L1		L0	L0, L1	L0, L1, L2, L3	L0, L1, L2, L3
L2	L2		L0, L1	L0, L1, L2	L0, L1, L2, L3	L0, L1, L2, L3
L3	L3	L0	L0, L1, L2	L1, L2, L3	L0, L1, L2, L3	L1, L2, L3
L4			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3
L5			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3

L0: a = 0 Is it possible to replace the use of a in block L1 with the

L1: b = a + 1 constant 0?

L2: c = c + bL3: a = b * 2

L4: if a < N goto L1

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
LO	L0			LØ		LØ
L1	L1		L0	L0, L1	L0, L1, L2, L3	L0, L1, L2, L3
L2	L2		L0, L1	L0, L1, L2	L0, L1, L2, L3	L0, L1, L2, L3
L3	L3	LØ	L0, L1, L2	L1, L2, L3	L0, L1, L2, L3	L1, L2, L3
L4			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3
L5			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3

L1: b = a + 1

L2: c = c + b

L3: a = b * 2

L4: if a < N goto L1

L5: return c

Is it possible to replace the use of *a* in block L1 with the constant 0?

No. To determine this, we would look at the IN set for block L1 -- the fact that the IN set contains two definitions of 'a' (L0 and L3) means we cannot perform this constant propagation. In other words, more than one definition of 'a' is a reaching definition to block L1, and therefore performing constant propagation would only preserve one possible value of 'a' and the generated code would not be equivalent.

Block	GEN	KILL	IN (1)	OUT (1)	IN (2)	OUT (2)
L0	L0			L0		L0
L1	L1		L0	L0, L1	L0, L1, L2, L3	L0, L1, L2, L3
L2	L2		L0, L1	L0, L1, L2	L0, L1, L2, L3	L0, L1, L2, L3
L3	L3	L0	L0, L1, L2	L1, L2, L3	L0, L1, L2, L3	L1, L2, L3
L4			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3
L5			L1, L2, L3	L1, L2, L3	L1, L2, L3	L1, L2, L3

Phi-Functions

- A way to represent <u>multiple possible values</u> for a certain definition
 - Not a "real" instruction just a form of bookkeeping needed for SSA

Original.

SSA Form

Where to place Phi-Functions?

- Wherever a variable has multiple possible definitions entering a block
 - o Inefficient (and unnecessary!) to consider all possible phi-functions at the start of each block

Example With a Loop

Notes:

•Loop-back edges are also merge points, so require Φ-functions
•a₀, b₀, c₀ are initial values of a, b, c on entry to initial block
•b₁ is dead – can delete later
•c is live on entry – either input parameter or uninitialized

Problem 2(a)

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0		
1		
2		
3		
4		
5		
6		

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0		
1		
2		
3		
4		
5		
6		

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	
1		
2		
3		
4		
5		
6		

A node **x** dominates a node **Y** iff every path from the entry point of the control flow graph to **Y** includes **X**.

A node \mathbf{X} strictly dominates \mathbf{Y} and $\mathbf{X} \neq \mathbf{Y}$

Need to go through 0 to get through 1, 2, 3, 4, 5, 6 and 0 cannot strictly dominate itself

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1		
2		
3		
4		
5		
6		

A node **Y** is in the *dominance frontier* of node **X** iff **X** dominates an immediate predecessor of **Y** but **X** does not strictly dominate **Y**. A node **0** is in the *dominance frontier* of node **0** iff **0** dominates an immediate predecessor **(6)** of **0** but **0** does not strictly dominate **0**

0 dominates 6, 6 is an immediate predecessor of 0, 0 does not strictly dominate 0

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1		
2		
3		
4		
5		
6		

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	
2		
3		
4		
5		
6		

A node \mathbf{x} dominates a node \mathbf{Y} iff every path from the entry point of the control flow graph to \mathbf{Y} includes \mathbf{x} .

A node x strictly dominates a node y iff x dominates y and $x \neq y$

1 does not dominate 6 because there is a path from 5 that doesn't include 1. 1 does not strictly dominate itself

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2		
3		
4		
5		
6		

A node **Y** is in the *dominance frontier* of node **X** iff **X** dominates an immediate predecessor of **Y** but **X** does not strictly dominate **Y**.

X = 1, Y = 6, 1 dominates 1, 1 is an immediate predecessor of 6, 1 does not strictly dominate 6

X = 1, Y = 1, 1 dominates 1, 1 is an immediate predecessor of 1, 1 does not strictly dominate 1

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2		
3		
4		
5		
6		

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2	3, 4, 5	
3		
4		
5		
6		

A node \mathbf{x} dominates a node \mathbf{Y} iff every path from the entry point of the control flow graph to \mathbf{Y} includes \mathbf{x} .

A node x strictly dominates a node y iff x dominates y and $x \neq y$

Need to go through 2 to get through 3, 4, 5 and 2 cannot strictly dominate itself

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2	3, 4, 5	6
3		
4		
5		
6		

A node \mathbf{Y} is in the *dominance frontier* of node \mathbf{X} iff \mathbf{X} dominates an immediate predecessor of \mathbf{Y} but \mathbf{X} does not strictly dominate \mathbf{Y} .

X = 2, Y = 6, 2 dominates 5, 5 is an immediate predecessor of 6, 2 does not strictly dominate 6

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2	3, 4, 5	6
3	Ø	5
4		
5		
6		

3 does not strictly dominate 5 (path through 4) and therefore does not strictly dominate anything else

3 dominates 3, 3 is an immediate predecessor of 5, 3 does not strictly dominate 5

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2	3, 4, 5	6
3	ø	5
4	Ø	5
5		
6		

Same as previous slide but with 4 instead of 3

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2	3, 4, 5	6
3	Ø	5
4	Ø	5
5	Ø	6
6		

5 does not strictly dominate 6 (path through 1) and therefore does not strictly dominate anything else

5 dominates 5, 5 is an immediate predecessor of 6, 5 does not strictly dominate 6

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1,6
2	3, 4, 5	6
3	Ø	5
4	Ø	5
5	Ø	6
6	Ø	0

6 does not strictly dominate 0 (path through 0) and therefore does not strictly dominate anything else

6 dominates 6, 6 is an immediate predecessor of 0, 6 does not strictly dominate 0

Problem 2(b)

Converting to SSA

- Determine which variables need merging in each node
- Assign numbers to definitions and add phi functions

Step 1: Dominance Frontiers

NODE	STRICTLY DOMINATES	DOMINANCE FRONTIER
0	1, 2, 3, 4, 5, 6	0
1	Ø	1, 6
2	3, 4, 5	6
3	Ø	5
4	Ø	5
5	Ø	6
6	Ø	0

Converting to SSA

Determine which variables need merging in each node

We will compute using the dominance frontiers

Assign numbers to definitions and add phi functions

Step 2: Determine Necessary Merges

ITERATION 1: Each node in the dominance frontier of node X will merge any definitions created in node X.

Step 2: Determine Necessary Merges

ITERATION 2: Each merge will create a new definition, which may need merging again.

Step 2: Determine Necessary Merges

ITERATION 3: Each merge will create a new definition, which may need merging again.

NODE		DOMINANCE FRONTIER
0		0
1		1, 6
2		6
3		5
4		5
5		6
6	d,e	0

Converting to SSA

Determine which variables need merging in each node

Assign numbers to definitions and add phi functions

Place phi functions first, then increment subscripts

Merges go first, and each successive definition of a variable should increment its index by 1.

$$\mathbf{B_0}$$
 $\begin{bmatrix} a = c + 2 \\ d = a + b \end{bmatrix}$

Need to merge:

Note: these subscripts determined after doing the rest of the CFG!

Merges go first, and each successive definition of a variable should increment its index by 1.

$$\mathbf{B_1}$$
 $\mathbf{C} = \mathbf{b} - \mathbf{d}$

 \Longrightarrow

$$c_2 = \Phi(c_1, c_3)$$
 $c_3 = b_1 - d_2$

Need to merge:

С

Note: must merge its own (later) definition because of the back-edge!

Merges go first, and each successive definition of a variable should increment its index by 1.

$$B_2$$
 b = a + c

$$\mathbf{B_2} \mid \mathbf{b_2} = \mathbf{a_2} + \mathbf{c_1}$$

Nothing to merge

Merges go first, and each successive definition of a variable should increment its index by 1.

$$\mathbf{B}_{3}$$
 d = b * 2
e = 2 * 2

Nothing to merge

Merges go first, and each successive definition of a variable should increment its index by 1.

$$\mathbf{B_4}$$
 d = b + 1

$$\mathbf{B_4} \mid \mathbf{d_4} = \mathbf{b_2} + \mathbf{1}$$

Nothing to merge

Merges go first, and each successive definition of a variable should increment its index by 1.

$$\mathbf{B}_5 \mid \mathbf{C} = \mathbf{d} >> 4$$

$$\mathbf{B_5} \begin{vmatrix} d_5 &= \Phi(d_3, d_4) \\ e_3 &= \Phi(e_1, e_2) \\ c_4 &= d_5 >> 4 \end{vmatrix}$$

Need to merge:

d,e

Merges go first, and each successive definition of a variable should increment its index by 1.

$$B_6$$
 d = c + b

Need to merge:

$$\mathbf{B_6} \begin{vmatrix} b_3 &= \Phi(b_1, b_2) \\ c_5 &= \Phi(c_3, c_4) \\ d_6 &= \Phi(d_2, d_5) \\ e_4 &= \Phi(e_1, e_3) \\ d_7 &= c_5 + b_3 \end{vmatrix}$$

