

CSE 401 Section 2 — Grammars and Ambiguity Solutions

1. Consider the following syntax for expressions involving addition and field selection:

expr ::= expr + field
expr ::= field
field ::= expr . id
field ::= id

a) Show that this grammar is ambiguous.

Here are two derivations of id+id.id:

b) Give an unambiguous context-free grammar that fixes the problem(s) with the grammar
in part (a) and generates expressions with id, field selection, and addition. As in Java,
field selection should have higher precedence than addition and both field selection and
addition should be left-associative (i.e. a+b+c means (a+b)+c).

The problem is in the first rule for field, which creates an ambiguous precedence

expr ::= expr + field
expr ::= field
field ::= field . id
field ::= id!

expr

expr

expr

expr

expr

expr field
field field

field field

field id id id

id id id

+

+

.

.

2. The following grammar is ambiguous:

 A ::= B b C
 B ::= b | ε
 C :: = b | ε

To demonstrate this ambiguity we can use pairs of derivations. Here are five different pairs. For
each pair of derivations, circle OK if the pair correctly proves that the grammar is ambiguous.
Circle WRONG if the pair does not give a correct proof. You do not need to explain your
answers.

(Note: Whitespace in the grammar rules and derivations is used only for clarity. It is not part of
the grammar or of the language generated by it.)

(a) OK WRONG

A => B b C => b b C => b b b
 A => B b C => B b b => b b b

(b) OK WRONG

A => B b C => b b C => b b
A => B b C => b C => b b

(c) OK WRONG

A => B b C => b b C => b b
 A => B b C => B b b => b b

(d) OK WRONG

A => B b C => b b C => b b
 A => B b C => b b C => b b b

(e) OK WRONG

A => B b C => B b => b b
 A => B b C => B b b => b b !

(Mix of left/rightmost derivations; also b b b has
unique leftmost and unique rightmost derivations)

(Two different leftmost derivations of b b)

(Different derivations: one leftmost, one
rightmost)

(Two different strings, not two derivations of
same string)

(Two different rightmost derivations of b b)

3. The following grammar is ambiguous. (As before, whitespace is used only for clarity; it is not
part of the grammar or the language generated by it.)

 P ::= ! Q | Q && Q | Q
 Q ::= P | id

Give a grammar that generates exactly the same language as the one generated by this grammar
but that is not ambiguous. You may resolve the ambiguities however you want – there is no
requirement for any particular operator precedence or associativity in the resulting grammar.

This solution disambiguates ! and && by putting them in different productions, and also forces
the binary operator && to be left-associative:

 P ::= P && Q | Q
 Q ::= !Q | id

Other unambiguous grammars that generated all of the strings produced by the original grammar
also received full credit, regardless of how they fixed the problem.

