
CSE 401/M501 – Compilers

Memory Management
and Garbage Collection

Hal Perkins
Spring 2023

UW CSE 401/M501 Spring 2023 W-1

References

• Uniprocessor Garbage Collection Techniques
Wilson, IWMM 1992 (longish survey)

• The Garbage Collection Handbook
Jones, Hosking, Moss, 2012 (book)

• Earlier version of this lecture by Vijay Menon,
CSE 501; Jim Hogg, CSE 401/M501

UW CSE 401/M501 Spring 2023 W-2

Program Memory

• Typically divided into 3 regions:
– Global / Static: fixed-size at compile time; exists

throughout program lifetime
– Stack / Automatic: per function, automatically

allocated and released (local variables)
– Heap / Dynamic: Explicitly allocated by

programmer (malloc/new/cons)
• Need to recover / recycle storage for reuse when no

longer needed

UW CSE 401/M501 Spring 2023 W-3

Manual Heap Management

• Programmer calls free/delete when done with
storage

• Pro
– Cheap
– Precise

• Con
– How do we enumerate the ways? the pain?
– Buggy, huge debugging costs, …

UW CSE 401/M501 Spring 2023 W-4

Conventional Heap Storage

UW CSE 401/M501 Spring 2023 W-5

...
char* s = (char*) malloc(50);
...
free(s);

C Runtime Heap Memory

• Developer must remember to free memory when no longer required
• Eventual fragmentation => slow to malloc, slow to free

In Use

UW CSE 401/M501 Spring 2023 W-6

Heap Storage Fragmentation

C Runtime Heap Memory

In Use

• malloc: walk the freelist to find a slot big enough for current request
• free: adjust freelist; collapse contiguous freespace
• fragmentation: plenty free chunks but none big enough for request
• cannot compact the used space - may contain pointers; may be pointed-at

Bugs

UW CSE 401/M501 Spring 2023 W-7

• Forget to free => eventually run out of memory
• called a "memory leak”

• Call free, but continue to use!
• called "use-after-free", or "dangling pointer"
• memory corruption - wrong answers; crash if lucky!
• major source of security issues
• detect via "pool poisoning"

2 pointers

free via 1

free malloc;
corruption!

Garbage Collection

• Automatically reclaim heap memory no longer
in use by the program
– Simplify programming
– Better modularity, concurrency
– Avoids huge problems with dangling pointers
– Almost required for type safety
– But not a panacea – still need to watch for stale

pointers, GC’s version of “memory leaks”
• i.e., pointers in live data to no-longer-used data

UW CSE 401/M501 Spring 2023 W-8

Garbage Collection

UW CSE 401/M501 Spring 2023 W-9

next

next

Allocate an object; fast!

next

Allocate more objects;
and one more, please?

Garbage Collection

UW CSE 401/M501 Spring 2023 W-10

Allocate another object

next

next
"roots"

Trace reachable objects

next

"roots"

Compact unreachables;
update all pointers

GC does not find garbage: it finds live objects and ignores all other memory

Heap Characteristics

• Most objects are small (< 128 bytes)
• Object-oriented and functional code allocates

a huge number of short-lived objects
• Want allocation, recycling to be fast and low

overhead
– Serious engineering required

UW CSE 401/M501 Spring 2023 W-11

Allocation

• Usually multiple free lists organized by size for
small objects (8, 16, 24, 32, … depends on
alignment); additional list for large blocks
– Regular malloc does exactly the same

• Allocation
– Grab a free object from the right free list
– No more memory of the right size triggers a

collection

UW CSE 401/M501 Spring 2023 W-12

What is Garbage?

• An object is live if it is still in use
• GC needs to be conservative
– OK to keep memory no longer in use
– Not ok to reclaim something that is live

• An object is garbage if it is not live

UW CSE 401/M501 Spring 2023 W-13

Reachability

• Root set : the set of global and local (stack +
register) variables visible to active procedures

• Heap objects are reachable if:
– They are directly accessible from the root set
– They are accessible from another reachable heap

object (pointers/references)
• Liveness implies reachability (conservative

approximation)
• Not reachable implies garbage

UW CSE 401/M501 Spring 2023 W-14

Tracing Collectors

• Mark the objects reachable from the root set,
then perform a transitive closure to find all
reachable objects

• All unmarked objects are dead and can be
reclaimed

• Various algorithms: mark-sweep, copying,
generational…

UW CSE 401/M501 Spring 2023 W-15

Mark-Sweep Collection

• Mark phase – find the live objects
– Transitive closure from root set marking all live

objects

• Sweep phase
– Sweep memory for unmarked objects and return

to appropriate free list(s)

UW CSE 401/M501 Spring 2023 W-16

UW CSE 401/M501 Spring 2023 W-17

GC Start

root

root

UW CSE 401/M501 Spring 2023 W-18

GC Mark Phase

root

root

Unreachable

Reachable

UW CSE 401/M501 Spring 2023 W-19

GC Sweep Phase

root

root

Reachable

With memory free, now allocate space for object that provoked the GC

Reachability

• Compiler produces:
– A stack-map at GC safe points
• Stack map: enumerate global variables, stack variables,

live registers (tricky stuff! Why?)
• GC safe points: new(), method entry, method exit, back

edges (thread switch points)
– Stop all threads at one of their GC safe points and then ok to

do a collection

– Type information blocks
• Identifies reference fields in objects (to trace the heap)

UW CSE 401/M501 Spring 2023 W-20

Mark-Sweep Evaluation

• Pro
– Space efficiency
– Incremental object reclamation

• Con
– Relatively slower allocation time (free lists vs. “next

chunk of heap”)
– Can have poor locality of objects allocated at around

the same time
– Redundant work rescanning long-lived objects
– “Stop the world I want to collect”

UW CSE 401/M501 Spring 2023 W-21

Semispace Copying Collector

• Idea: Divide memory in half
– Storage allocated from one half of memory
– When full, copy live objects from old half (“from

space”) to unused half (“to space”) & swap
semispaces

• Fast allocation – next chunk of to-space
• Requires copying collection of entire heap

when collection needed

UW CSE 401/M501 Spring 2023 W-22

Semispace collection

• Same notion of root set and reachable as in
mark-sweep collector

• Copy each object when first encountered
• Install forwarding pointers in from-space

referring to new copy in to-space
• Transitive closure: follow pointers, copy, and

update as it scans
• Reclaims entire “from space” in one shot
– Swap from- and to-space when copy done

UW CSE 401/M501 Spring 2023 W-23

Semispace Copying Collector Evaluation

• Pro
– Fast allocation
– Locality of objects allocated at same time
– Locality of objects connected by pointers (can use

depth-first or other strategies during the mark-copy
phase)

• Con
– Wastes half of (virtual?) memory

• Other copying/compacting collectors solve some of this
• Be careful with VM – don’t want compacting to thrash

– Redundant work rescanning long-lived objects
– “Stop the world I want to collect”

UW CSE 401/M501 Spring 2023 W-24

Generational Collectors

• Generational hypothesis: young objects die
more quickly than older ones (Lieberman &
Hewitt ‘83, Ungar ‘84)

• Most pointers are from younger to older
objects (Appel ‘89, Zorn ‘90)

• So, organize heap into young and old regions,
collect young space more often

UW CSE 401/M501 Spring 2023 W-25

Generational Collector

• Divide heap into two spaces: young, old
• Allocate new objects in young space
• When young space fills up, collect it and copy

surviving objects to old space
– Engineering: use write barriers to avoid having to scan

all of old space on quick collections – most pointers
that cross the boundary are from young objects to old

– Refinement: require objects to survive at least a few
collections before copying

• When old space fills, collect both
• Often use multiple generations, not just two

UW CSE 401/M501 Spring 2023 W-26

GC Tradeoffs

• Performance
– Mark-sweep often faster than semispace
– Generational better than both

• Mutator (i.e., user program) performance
– Semispace is often fastest
– Generational is better than mark-sweep

• Overall: generational is a good balance
• But: we still “stop the world” to collect

UW CSE 401/M501 Spring 2023 W-27

Advanced GC and Research Areas

• Parallel/concurrent garbage collection
– Found in more production collectors these days
• Tricky stuff – can’t debug it into correctness – there be

theorems here

• Locality issues
– Object collocation
– GC-time analysis

• Distributed GC

UW CSE 401/M501 Spring 2023 W-28

Compiler & Runtime Support

• GC tightly coupled with safe runtime (e.g.,
Java, CLR (C#, …), functional languages)
– Total knowledge of pointers (type safety)
– Tagged objects with type information
– Compiler maps for information
– Objects can be moved; forwarding pointers

UW CSE 401/M501 Spring 2023 W-29

What about unsafe languages? (e.g., C/C++)

• Boehm/Weiser collector: GC still possible without
compiler/runtime cooperation(!)
– New versions of malloc (& free) + GC to manage heap
– If it looks like a pointer, it’s a pointer
– Mark-sweep only – GC doesn’t move anything
– Allows GC in C/C++ but constraints on pointer bit-

twiddling
– Surprisingly effective, particularly if program uses

pointers as in a type-safe language (e.g., no pointer
mangling, no (void*)int tricks, etc.)

UW CSE 401/M501 Spring 2023 W-30

Boehm/Weiser Collector

• Useful for development/debugging
– Less burden on compiler/runtime implementor

• Used in various Java and .net prototypes,
research implementations, production code if
sufficiently effective

• Similar ideas for various tools to detect
memory leaks, etc.

UW CSE 401/M501 Spring 2023 W-31

A bit of perspective…

• Automatic GC has been around since LISP I in
1958

• Ubiquitous in functional and object-oriented
programming communities for decades

• Mainstream since Java(?) (mid-90s)
• Now conventional wisdom?

UW CSE 401/M501 Spring 2023 W-32

