CSE 401/M501 - Compilers

Dataflow Analysis
Hal Perkins
Spring 2023

Administrivia

- Semantics/type-checking due Tuesday night
- Extra office hours on Monday and Tuesday in honor of the occasion
- CSE M 501 groups: please let instructor know what you plan to do for project extra part
- M501 groups turn in codegen + additions at end of quarter, not a separate codegen step

Agenda

- Dataflow analysis: a framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Then: other analysis problems that work in the same framework
- Some of these are the same analysis and optimizations we've seen, but more formally and with details

Common Subexpression Elimination

- Goal: use dataflow analysis to find common subexpressions
- Idea: calculate available expressions at beginning of each basic block
- Avoid re-evaluation of an available expression - use a copy operation
- Simple inside a single block; more complex dataflow analysis used across blocks

"Available" and Other Terms

- An expression e is defined at point p in the CFG if its value is computed at p
- Sometimes called definition site
- An expression e is killed at point p if one of its operands is defined at p
- Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p

Available Expression Sets

- To compute available expressions, for each block b, define
- AVAIL(b) - the set of expressions available on entry to b
- NKILL(b) - the set of expressions not killed in b
- i.e., all expressions in the program except for those killed in b
- $\operatorname{DEF}(b)$ - the set of expressions defined in b and not subsequently killed in b

Computing Available Expressions

- $\operatorname{AVAIL}(b)$ is the set
$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$
- preds (b) is the set of b 's predecessors in the CFG
- The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
- The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b
- This gives a system of simultaneous equations -a dataflow problem

Computing Available Expressions

- Big Picture
- Build control-flow graph
- Calculate initial local data - DEF(b) and NKILL(b)
- This only needs to be done once for each block b and depends only on the statements in b
- Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
- Another fixed-point algorithm

Computing DEF and NKILL (1)

- First, figure out which expressions are killed in each block (i.e., clobbered by some assignment later in that block)
- For each block b with operations $\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{n}$

```
KILLED = \varnothing // variables killed (later) in b, not expressions
DEF(b)=\varnothing
for k=n to 1 // note: working back to front
    assume ok is "x=y+z"
    add x to KILLED
    if ( y \not\in KILLED and z & KILLED)
        add " y + z" to DEF(b) // i.e., neither y nor z killed
                                    // after this point in b
```


Computing DEF and NKILL (2)

- After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b
NKILL $(b)=\{$ all expressions $\}$
for each expression e
for each variable $v \in e$ if $v \in$ KILLED then
$\operatorname{NKILL}(b)=\operatorname{NKILL}(b)-e$

Example: Compute DEF and NKILL

Computing Available Expressions

Once $\operatorname{DEF}(b)$ and $\operatorname{NKILL}(b)$ are computed for all blocks b

Worklist $=\left\{\right.$ all blocks $\left.b_{k}\right\}$
while (Worklist $\neq \varnothing$)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist $=$ Worklist \cup successors (b)

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

\square = in worklist
\square $=$ processing

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

\square = in worklist
\square $=$ processing

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))$

Example: Find Available Expressions

$$
\operatorname{AVAIL}(b)=\cap_{x \in \operatorname{preds}(b)}(\operatorname{DEF}(x) \cup(\operatorname{AVAIL}(x) \cap \operatorname{NKILL}(x)))
$$

- Termination?
- Always
- AVAIL(b) initially all empty
- In equation above, DEF \& NKILL are unchanging, and adding to AVAIL(x) can't shrink AVAIL(b)
- Only a finite number of exprs in the program, so the alg is again climbing a finite n-cube; can't climb forever
- Order of worklist removals?
- Any will work
- Some are faster than others; e.g., if CFG is a DAG, then go in topological order (which would have been faster on the previous example)

Dataflow analysis

- Available expressions is an example of a dataflow analysis problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story - once we've discovered facts, we then need to use them to improve code

Characterizing Dataflow Analysis

- All of these algorithms involve sets of facts about each basic block b

IN (b) - facts true on entry to b
$\operatorname{OUT}(b)$ - facts true on exit from b
GEN (b) - facts created and not killed in b
KILL (b) - facts killed in b

- These are related by the equation

$$
\operatorname{OUT}(b)=\operatorname{GEN}(b) \cup(\operatorname{IN}(b)-\operatorname{KILL}(b))
$$

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward
- But will reach correct solution (fixed point) regardless of order in which blocks are considered

Example:Live Variable Analysis

- A variable v is live at point p iff there is any path from p to a use of v along which v is not redefined
- Some uses:
- Register allocation - only live variables need a register
- Eliminating useless stores - if a variable is not live at the store location, then the stored variable will never be used
- Detecting uses of uninitialized variables - if live at declaration (before initialization) then it might be used uninitialized
- Improve SSA construction - only need Φ-function for variables that are live in a block (later)

Liveness Analysis Sets

- For each block b, define
- use[b] = variable used in b before any def
- def[b] = variable defined in b
- in $[b]=$ variables live on entry to b
- out $[b]=$ variables live on exit from b

Equations for Live Variables

- Given the preceding definitions, we have

$$
\begin{aligned}
& \operatorname{in}[b]=\text { use }[b] \cup(\operatorname{out}[b]-\operatorname{def}[b]) \\
& \operatorname{out}[b]=\cup s \in \operatorname{succ}[b] \operatorname{in}[s]
\end{aligned}
$$

- Algorithm
- Set in $[b]=$ out $[b]=\varnothing$
- Update in, out until no change

Example (1 stmt per block)

- Code

a := 0
L: b:=a+1
$\mathrm{c}:=\mathrm{c}+\mathrm{b}$
$\mathrm{a}:=\mathrm{b}^{*} 2$
if $\mathrm{a}<\mathrm{N}$ goto $\mathrm{L} \quad \mathrm{N}$ assumed const
return c

$$
\begin{aligned}
& \operatorname{in}[b]=\operatorname{use}[b] \cup(\operatorname{out}[b]-\operatorname{def}[b]) \\
& \operatorname{out}[b]=\cup_{s \in \operatorname{succ}[b]} \operatorname{in}[s]
\end{aligned}
$$

Calculation

$$
\begin{aligned}
& \operatorname{in}[b]=\operatorname{use}[b] \cup(\operatorname{out}[b]-\operatorname{def}[b]) \\
& \operatorname{out}[b]=\cup_{s \in \operatorname{succ}[b]} \operatorname{in}[s]
\end{aligned}
$$

Calculation

$$
\begin{aligned}
& \operatorname{in}[b]=\operatorname{use}[b] \cup(\operatorname{out}[b]-\operatorname{def}[b]) \\
& \operatorname{out}[b]=\cup_{s \in \operatorname{succ}[b]}^{\operatorname{in}[s]}
\end{aligned}
$$

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
- USED (b) - variables used in b before being defined in b
- NOTDEF(b) - variables not defined in b
- LIVE(b) - variables live on exit from b
- Equation

$$
\operatorname{LIVE}(b)=\cup_{s \in \operatorname{succ}(b)} \operatorname{USED}(s) \cup(\operatorname{LIVE}(s) \cap \operatorname{NOTDEF}(s))
$$

Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
- Forward problems - reverse postorder
- Backward problems - postorder

Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v
- Uses
- Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

- Sets
- DEFOUT (b) - set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
- SURVIVED (b) - set of all definitions not obscured by a definition in b
- REACHES(b) - set of definitions that reach b
- Equation
$\operatorname{REACHES}(b)=\cup_{p \in \operatorname{preds}(b)} \operatorname{DEFOUT}(p) \cup$
$(\operatorname{REACHES}(p) \cap \operatorname{SURVIVED}(p))$

Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations
- Uses
- Code hoisting - move e to p (reduces code size; no effect on execution time)

Equations for Very Busy Expressions

- Sets
- USED (b) - expressions used in b before they are killed
- KILLED (b) - expressions redefined in b before they are used
- VERYBUSY (b) - expressions very busy on exit from b
- Equation
$\operatorname{VERYBUSY}(b)=\cap_{s \in \operatorname{succ}(b)} \operatorname{USED}(s) \cup$
(VERYBUSY(s) - KILLED(s))

Using Dataflow Information

- A few examples of possible transformations...

Classic Common-Subexpression Elimination (CSE)

- In a statement s: z := x op y, if x op y is available at s then it need not be recomputed
- Analysis: compute reaching expressions i.e., statements $\mathrm{n}: v:=x$ op y such that the path from n to s does not compute x op y or define x or y. (How? Like reaching definitions, but for expressions.)

Classic CSE Transformation

- If x op y is defined at n and reaches s
- Create new temporary t_{i}
- Rewrite $\mathrm{n}: v:=x$ op y as

$$
\begin{aligned}
& \mathrm{n}: t_{i}:=x \text { op } y \quad / / t_{i} \text { is a new temporary } \\
& \mathrm{n}^{\prime}: v:=t_{i}
\end{aligned}
$$

- Rewrite statement s: $z:=x$ op y to be

$$
\mathrm{s}: z:=t_{i}
$$

- (Rely on copy propagation to remove extra assignments if not really needed)

Revisiting Example (w/small change)

Revisiting Example (w/small change)

Then Apply Very Busy...

Constant Propagation

- Suppose we have
- Statement $\mathrm{d}: t:=c$, where c is constant
- Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t

Copy Propagation

- Similar to constant propagation
- Setup:
- Statement d: $t:=z$
- Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
- Recall that this can help remove dead assignments

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

$$
a:=y+z
$$

$\mathrm{u}:=\mathrm{y}$
$\mathrm{c}:=\mathrm{u}+\mathrm{z} \quad / /$ copy propagation makes this $\mathrm{y}+\mathrm{z}$

- After copy propagation we can recognize the common subexpression

Dead Code (Assignment) Elimination

- If we have an instruction
$\mathrm{s}: a$:= b op c
and a is not live-out after s, then s can be eliminated
- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
- If b or c are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise

Dataflow...

- General framework for discovering facts about programs
- Although not the only possible story
- And then: facts open opportunities for code improvement
- Next time: SSA (static single assignment) form transform program to a new form where each variable has only one single definition
- Can make many optimizations/analysis more efficient

