CSE 401/M501 - Compilers

Survey of Code Optimizations
 Hal Perkins

Spring 2023

Administrivia

- Semantics/type checking due Tuesday night
- Sections this week: project semantics checkin / consultation
- (new Friday) Extra office hours added on Monday and Tuesday next week
- CSE M 501 "project extras" requirements / suggestions posted
- Figure out what you want to do and discuss with instructor, preferably by early next week

Agenda

- Survey some code "optimizations" (improvements)
- Get a feel for what's possible
- Some organizing concepts
- Basic blocks
- Control-flow and dataflow graph
- Analysis vs. transformation

Optimizations

- Use added passes to identify inefficiencies in intermediate or target code
- Replace with equivalent but better sequences
- Equivalent = "has same externally visible behavior"
- Better can mean many things: faster, smaller, use less power, ...
- "Optimize" overly optimistic: "usually improve" is generally more accurate
- And "clever" programmers can outwit you!

An example

 happens later; we assume as many "pseudo registers" tn as we need here; using a new tn every time simplifies tracking.```
x = a[i] + b[2];
c[i] = x - 5;
```

```
t1 = *(fp + ioffset); // i
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t5 = 2;
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ...
t10 = *(fp + xoffset); // x
t11 = 5;
t12 = t10 - t11;
t13 = *(fp + ioffset); // i
t14 = t13 * 4;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := ...
```


## An example



## An example

$$
\begin{aligned}
& x=a[i]+b[2] \\
& c[i]=x-5
\end{aligned}
$$

$$
t 1=*(f p+i o f f s e t) ; / / i
$$

$$
\text { t2 }=\text { t1 } \ll 2
$$

$$
t 3=f p+t 2
$$

$$
t 4=*(t 3+\text { aoffset }) ; / / a[i]
$$

$$
t 5=2
$$

$$
\text { t6 }=2 \ll 2 ; \quad / / \text { was } t 5 \ll 2
$$

$$
{ }^{\pi} \mathrm{t} 7=\mathrm{fp}+\mathrm{t} 6
$$

$$
\mathrm{t} 8=*(\mathrm{t} 7+\mathrm{boffset}) ; / / \mathrm{b}[2]
$$

$$
t 9=t 4+t 8
$$

$$
*(f p+x o f f s e t)=t 9 ; \quad / / x=\ldots
$$

$$
\mathrm{t} 10=*(\mathrm{fp}+\text { xoffset }) ; / / \mathrm{x}
$$

$$
\mathrm{t} 11=5
$$

$$
\Delta t 12=t 10-5 ; \quad / / \text { was } t 10-t 11
$$

$$
t 13=*(f p+i o f f s e t) ; / / i
$$

$$
\mathrm{t} 14=\mathrm{t} 13 \ll 2
$$

$$
\mathrm{t} 15=\mathrm{fp}+\mathrm{t} 14
$$

$$
*(t 15+c o f f s e t)=t 12 ; / / c[i]:=\ldots
$$

## An example

$$
\begin{aligned}
& x=a[i]+b[2] ; \\
& c[i]=x-5
\end{aligned}
$$

```
t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t5 = 2;
t6 = 2 << 2;
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ...
t10 = *(fp + xoffset); // x
t11= 5;
t12 = t10 - 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := ...
```


## Anexanne

$$
\begin{aligned}
& x=a[i]+b[2] ; \\
& c[i]=x-5
\end{aligned}
$$

```
t1 \(=\) * (fp + ioffset); // i
t2 \(=\mathrm{t} 1 \ll 2\);
t3 \(=\mathrm{fp}+\mathrm{t} 2\);
t4 \(=\) * (t3 + aoffset); //a[i]
t6 \(=8\); // was \(2 \ll 2\)
\(\mathrm{t} 7=\mathrm{fp}+\mathrm{t} 6\);
t8 \(=\) * (t7 + boffset); // b[2]
t9 = t4 \(+\mathrm{t8}\);
* (fp + xoffset) \(=t 9 ; ~ / / x=\ldots\)
t10 \(=\) * (fp + xoffset) ; // x
\(\mathrm{t} 12=\mathrm{t} 10-5\);
t13 \(=\) * (fp + ioffset) ; // i
t14 = t13 < 2 ;
\(\mathrm{t} 15=\mathrm{fp}+\mathrm{t} 14\);
*(t15 + coffset) \(=\) t12; //c[i] := ...
```


## An example

$$
\begin{aligned}
& \mathbf{x}=a[i]+b[2] ; \\
& c[i]=x-5 ;
\end{aligned}
$$

```
t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
*6-8;
t7 = fp + 8; // was fp + t6
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ...
t10 = *(fp + xoffset); // x
t12 = t10 - 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := ...
```


## Anexannole

$$
\begin{aligned}
& x=a[i]+b[2] ; \\
& c[i]=x-5
\end{aligned}
$$

```
t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t7 = boffset + 8; // was fp + 8
^t8 = *(t7 + fp); // b[2] (was t7 + boffset)
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ...
t10 = *(fp + xoffset); // x
t12 = t10 - 5;
t13 = *(fp + ioffset); // i
t14 = t13<< 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := ...
```


## An example

$$
\begin{aligned}
& \mathbf{x}=a[i]+b[2] ; \\
& c[i]=x-5 ;
\end{aligned}
$$

... more constant folding, which in turn enables ...

```
t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t7 = -24; // was boffset (-32) + 8
t8 = *(t7 + fp); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ...
t10 = *(fp + xoffset); // x
t12 = t10 - 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := ...
```


## An example

$$
\begin{aligned}
& x=a[i]+b[2] \\
& c[i]=x-5
\end{aligned}
$$



```
t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
も7 = -24;
t8 = *(fp - 24); // b[2] (was t7+fp)
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ...
t10 = *(fp + xoffset); // x
t12 = t10 - 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := ...
```


## Anexannie

$$
\begin{aligned}
& x=a[i]+b[2] ; \\
& c[i]=x-5
\end{aligned}
$$

Common subexpression elimination - no need to compute *(fp+ioffset) again if we know it won't change

## Anexannole

$$
\begin{aligned}
& \mathbf{x}=a[i]+b[2] ; \\
& c[i]=x-5 ;
\end{aligned}
$$

| Copy propagation: replace |
| :--- |
| assignment targets with |
| their values (e.g., replace |
| t13 with t 1 ) |

```
 t1 = *(fp + ioffset); // i
 t2 \(=\) t1 \(\ll 2\);
 \(\mathrm{t} 3=\mathrm{fp}+\mathrm{t} 2\);
 t4 \(=\) *(t3 + aoffset); //a[i]
 t8 = *(fp - 24); //b[2]
 \(\mathrm{t} 9=\mathrm{t} 4+\mathrm{t} 8\);
 * \((\mathrm{fp}+\mathrm{xoffset})=\mathrm{t9} ; ~ / / \mathrm{x}=. .\).
 t10 = t9; // x (was *(fp + xoffset))
 t12 = t10-5;
 t13 = t1; // i
 t14 = t1 << 2; // was t13 << 2
\(\mathrm{t} 15=\mathrm{fp}+\mathrm{t} 14\);
*(t15 + coffset) \(=\) t12; // c[i] := ...
```


## An example

$$
\begin{aligned}
& \mathbf{x}=a[i]+b[2] ; \\
& c[i]=\mathbf{x}-5 ;
\end{aligned}
$$

Common subexpression elimination
t1 $=$ *(fp + ioffset); // i
t2 $=\mathrm{t} 1 \ll 2$;
$\mathrm{t} 3=\mathrm{fp}+\mathrm{t} 2$;
t4 $=$ * (t3 + aoffset); //a[i]
t8 $=$ *(fp - 24); // b[2]
$\mathrm{t} 9=\mathrm{t} 4+\mathrm{t} 8$;
*(fp + xoffset) = t9; // x = ...
t10 = t9; $\quad / / \mathrm{x}$
$\mathrm{t} 12=\mathrm{t} 10$ - 5;
t13 = t1; $\quad / / \mathrm{i}$
t14 = t2; $\quad / /$ was $\mathrm{t} 1 \ll 2$
$\mathrm{t} 15=\mathrm{fp}+\mathrm{t} 14$;
*(t15 + coffset) $=$ t12; // c[i] := ...

## An example



## An example

$$
\begin{aligned}
& x=a[i]+b[2] \\
& c[i]=x-5
\end{aligned}
$$

More copy propagation

$$
\begin{aligned}
& \text { t1 }=\text { * (fp }+ \text { ioffset) ; // i } \\
& \text { t2 = t1 << 2; } \\
& \text { t3 }=\mathrm{fp}+\mathrm{t} 2 \text {; } \\
& \text { t4 }=\text { * (t3 + aoffset) ; //a[i] } \\
& \text { t8 }=\text { * (fp - 24); //b[2] } \\
& \mathrm{t9}=\mathrm{t} 4+\mathrm{t8} \text {; } \\
& \text { * }(\mathrm{fp}+\mathrm{xoffset})=\mathrm{t9} ; \quad / / \mathrm{x}=\ldots \\
& \text { t10 = t9; // x } \\
& \text { t12 = t9 - } 5 \text {; } \\
& \text { t13 = t1; } \quad / / \text { i } \\
& \text { t14 = t2; } \\
& \mathrm{t} 15=\mathrm{fp}+\mathrm{t2} ; \quad / / \text { was } \mathrm{fp}+\mathrm{t} 14 \\
& \text { * }(\mathrm{t} 15 \text { + coffset) }=\mathrm{t} 12 \text {; // c[i] := ... }
\end{aligned}
$$

## Anexannie

$$
\begin{aligned}
& x=a[i]+b[2] \\
& c[i]=x-5
\end{aligned}
$$

More common
subexpression elimination and copy propagation
t1 $=*(f p+i o f f s e t) ; / / i$
t2 $=$ t1 $\ll 2$;
$t 3=\mathrm{fp}+\mathrm{t} 2$;
$t 4=*(t 3+$ aoffset $) ; / / a[i]$
t8 $=$ * (fp - 24); $/ / \mathrm{b}[2]$
$\mathrm{t9}=\mathrm{t} 4+\mathrm{t8}$;

* $(\mathrm{fp}+\mathrm{xoffset})=\mathrm{t9} ; ~ / / \mathrm{x}=\ldots$
t10 = t9; $/ / \mathbf{x}$
t12 = t9-5;
t13 = t1; $\quad / /$ i
t14 = t2;
t15 $=$ t3 // was $\mathrm{fp}+\mathrm{t} 2$
* (t3 + coffset) $=$ t12; // was *(t15 + ...)


## An example

$$
\begin{aligned}
& x=a[i]+b[2] \\
& c[i]=x-5
\end{aligned}
$$

t1 $=$ * (fp + ioffset); // i
t2 $=\mathrm{t} 1 \ll 2$;
$t 3=\mathrm{fp}+\mathrm{t} 2$;
$t 4=*(t 3+$ aoffset $) ; / / a[i]$
t8 $=$ * (fp - 24); // b[2]
$\mathrm{t9}=\mathrm{t} 4+\mathrm{t8}$;

* $(\mathrm{fp}+\mathrm{xoffset})=\mathrm{t9} ; \quad / / \mathrm{x}=\ldots$



## An example

```
x = a[i] + b[2];
c[i] = x - 5;
```

```
t1 = *(fp + ioffset); // i
\(\mathrm{t} 2=\mathrm{t} 1 \ll 2\);
\(\mathrm{t} 3=\mathrm{fp}+\mathrm{t} 2\);
t4 \(=\) *(t3 + aoffset); //a[i]
t8 \(=\) *(fp - 24); //b[2]
\(\mathrm{t} 9=\mathrm{t} 4+\mathrm{t} 8\);
*(fp + xoffset) = t9; // x = ...
t 12 = t 9 - 5 ;
*(t3 + coffset) \(=\) t12; // c[i] := ...
```

- Final: 3 loads ( $\mathrm{i}, \mathrm{a}[\mathrm{i}], \mathrm{b}[2]$ ), 2 stores ( $\mathrm{x}, \mathrm{c}[\mathrm{i}]$ ), 4 register-only moves, $8+/-, 1$ shift
- Original: 5 loads, 2 stores, 10 register-only moves, 12 +/-, 3 *
- Optimizer note: we usually leave assignment of actual registers to later stage of the compiler and assume as many "pseudo registers" as we need here


## Kinds of optimizations

- peephole: look at adjacent instructions
- local: look at individual basic blocks
- straight-line sequence of statements
- intraprocedural: look at whole procedure
- Commonly called "global"
- interprocedural: look across procedures
- "whole program" analysis
- gcc's "link time optimization" is a version of this
- Larger scope => usually more effective optimization when it can be done, but more cost and complexity
- Analysis is often less precise because of more possibilities


## Peephole Optimization

- After target code generation, look at adjacent instructions (a "peephole" on the code stream)
- try to replace adjacent instructions with something faster

| movq \%r9,16(\%rsp) <br> movq 16(\%rsp), \%r12 | movq \%r9, 16(\%rsp) <br> movq \%r9, \%r12 |
| :--- | :--- |

- Jump chaining can also be considered a form of peephole optimization (removing jump to jump)


## More Examples

| subq \$8, \%rax | movq \%r2,-8 (\%rax) |
| :--- | :--- |
| movq \%r2,0(\%rax) |  |
| \# \%rax modified |  |
| $\#$ before next read |  |
| movq 16(\%rsp), \%rax | incq 16(\%rsp) |
| addq \$1,\%rax |  |
| movq \%rax,16(\%rsp) |  |
| \# \%rax modified |  |
| $\#$ before next read |  |

- One way to do complex instruction selection


## Algebraic Simplification

- "constant folding", "strength reduction"

$$
\begin{aligned}
& -z=3+4 ; \quad \rightarrow z=7 \\
& -\mathrm{z}=\mathrm{x}+0 ; \quad \rightarrow \mathrm{z}=\mathrm{x} \\
& -\mathbf{z}=\mathbf{x} * 1 ; \quad \rightarrow \quad \mathrm{z}=\mathrm{x} \\
& -\mathbf{z}=\mathbf{x} * 2 ; \quad \rightarrow \quad \mathrm{z}=\mathrm{x} \ll 1 \text { or } \mathrm{z}=\mathrm{x}+\mathrm{x} \\
& -\mathbf{z}=\mathbf{x} * 8 ; \quad \rightarrow \mathbf{z}=\mathbf{x} \ll 3 \\
& -\mathbf{z}=\mathbf{x} / 8 ; \quad \rightarrow \mathbf{z}=\mathbf{x} \gg 3 \text { (only if know } \mathrm{x}>=0 \text { ) } \\
& -\mathbf{z}=(\mathrm{x}+\mathrm{y})-\mathrm{y} ; \rightarrow \mathrm{z}=\mathrm{x} \text { (maybe; not doubles, } \\
& \text { might change int overflow) }
\end{aligned}
$$

- Can be done at many levels from peephole on up
- Why do these examples happen?
- Often created during conversion to lower-level IR, by other optimizations, code gen, etc.


## Local Optimizations

- Analysis and optimizations within a basic block
- Basic block: straight-line sequence of statements
- no control flow into or out of middle of sequence
- Better than peephole
- Not too hard to implement with reasonable IR
- Machine-independent, if done on IR


## Local Constant Propagation

- If variable assigned a constant, replace downstream uses of the variable with the constant (until variable reassigned)
- Can enable more constant folding
- Code; unoptimized intermediate code:

```
count = 10; 年 count = 10;
... // count not changed t1 = count;
x = count * 5;
Y = x ^ 3;
x = 7;
\[
\begin{aligned}
& \text { count }=10 ; \\
& \text { t1 }=\text { count; } \\
& \text { t2 }=5 ; \\
& t 3=t 1 * t 2 ; \\
& x=t 3 ; \\
& t 4=x ; \\
& t 5=3 ; \\
& t 6=\exp (t 4, t 5) ; \\
& y=t 6 ; \\
& x=7
\end{aligned}
\]
```


## Local Constant Propagation

- If variable assigned a constant, replace downstream uses of the variable with constant (until variable reassigned)
- Can enable more constant folding
- Code; constant propagation:

| ```count = 10; ... // count not changed x = count * 5; y = x ^ 3; x = 7;``` | ```count = 10; t1 = 10; // cp count t2 = 5; t3 = 10 * t2; // cp t1 x = t3; t4 = x; t5 = 3; t6 = exp(t4,3); // cp t5 y = t6; x = 7``` |
| :---: | :---: |

## Local Constant Propagation

- If variable assigned a constant, replace downstream uses of the variable with constant (until variable reassigned)
- Can enable more constant folding
- Code; constant folding:

```
count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;
```

```
count \(=10\);
```

count $=10$;
t1 = 10;
t1 = 10;
t2 = 5;
t2 = 5;
t3 $=50 ; \quad / / 10 * t 2$
t3 $=50 ; \quad / / 10 * t 2$
$\mathbf{x}=\mathrm{t} 3$;
$\mathbf{x}=\mathrm{t} 3$;
$\mathrm{t} 4=\mathrm{x}$;
$\mathrm{t} 4=\mathrm{x}$;
t5 $=3$;
t5 $=3$;
t6 $=\exp (t 4,3)$;
t6 $=\exp (t 4,3)$;
$y=t 6 ;$
$y=t 6 ;$
$\mathbf{x}=7$;

```
\(\mathbf{x}=7\);
```


## Local Constant Propagation

- If variable assigned a constant, replace downstream uses of the variable with constant (until variable reassigned)
- Can enable more constant folding
- Code; repropagated intermediate code

```
count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;
```

```
count \(=10\);
```

count $=10$;
t1 = 10;
t1 = 10;
t2 $=5$;
t2 $=5$;
t3 $=50$;
t3 $=50$;
$\mathbf{x}=50 ; \quad / / \mathrm{cp}$ t3
$\mathbf{x}=50 ; \quad / / \mathrm{cp}$ t3
$\mathrm{t} 4=50 ; \quad / / \mathrm{cp} \mathrm{x}$
$\mathrm{t} 4=50 ; \quad / / \mathrm{cp} \mathrm{x}$
t5 = 3;
t5 = 3;
t6 $=\exp (50,3) ; / / c p t 4$
t6 $=\exp (50,3) ; / / c p t 4$
$y=t 6 ;$
$y=t 6 ;$
$\mathbf{x}=7$;

```
\(\mathbf{x}=7\);
```


## Local Constant Propagation

- If variable assigned a constant, replace downstream uses of the variable with constant (until variable reassigned)
- Can enable more constant folding
- Code; refold intermediate code

```
count = 10; count = 10;
... // count not changed t1 = 10;
x = count * 5;
y = x ^ 3;
x = 7;
```

```
t2 = 5;
```

t2 = 5;
t3 $=50$;
t3 $=50$;
$\mathbf{x}=50$;
$\mathbf{x}=50$;
$t 4=50$;
$t 4=50$;
t5 = 3;
t5 = 3;
t6 $=125000 ; / /$ cf 50^3
t6 $=125000 ; / /$ cf 50^3
$y=t 6 ;$
$y=t 6 ;$
$\mathbf{x}=7$;

```
\(\mathbf{x}=7\);
```


## Local Constant Propagation

- If variable assigned a constant, replace downstream uses of the variable with constant (until variable reassigned)
- Can enable more constant folding
- Code; repropagated intermediate code

```
count = 10; count = 10;
... // count not changed t1 = 10;
x = count * 5;
y = x ^ 3;
x = 7;
```

```
t2 = 5;
```

t2 = 5;
t3 $=50$;
t3 $=50$;
$\mathbf{x}=50$;
$\mathbf{x}=50$;
$\mathrm{t} 4=50$;
$\mathrm{t} 4=50$;
t5 = 3;
t5 = 3;
t6 = 125000;
t6 = 125000;
$y=125000 ; \quad / /$ cp t6
$y=125000 ; \quad / /$ cp t6
$\mathbf{x}=7$;

```
\(\mathbf{x}=7\);
```


## Local Dead Assignment Elimination

- If l.h.s. of assignment never referenced again before being overwritten, then can delete assignment
- Why would this happen?

Clean-up after previous optimizations, often

```
count = 10; count = 10;
... // count not changed t1 = 10;
x = count * 5;
y = x^ ^ ;
x = 7;
```

$$
\begin{aligned}
& \text { count }=10 ; \\
& \mathrm{t} 1=10 ; \\
& \mathrm{t} 2=5 ; \\
& \mathrm{t} 3=50 ; \\
& \mathbf{x}=50 ; \\
& \mathrm{t} 4=50 ; \\
& \mathrm{t} 5=3 ; \\
& \mathrm{t} 6=125000 ; \\
& \mathbf{y}=125000 ; \\
& \mathrm{x}=7 ;
\end{aligned}
$$

## Local Dead Assignment Elimination

- If l.h.s. of assignment never referenced again before being overwritten, then can delete assignment
- Why would this happen?

Clean-up after previous optimizations, often

```
|count = 10; // count not changed
```


## Local Common Subexpression Elimination

- Look for repetitions of the same computation. Eliminate them if result won't have changed and no side effects
- Avoid repeated calculation and eliminates redundant loads
- Idea: walk through basic block keeping track of available expressions



## Local Common Subexpression Elimination

- Look for repetitions of the same computation. Eliminate them if result won't have changed and no side effects
- Avoid repeated calculation and eliminates redundant loads
- Idea: walk through basic block keeping track of available expressions



## Local Common Subexpression Elimination

- Look for repetitions of the same computation. Eliminate them if result won't have changed and no side effects
- Avoid repeated calculation and eliminates redundant loads
- Idea: walk through basic block keeping track of available expressions



## Local Common Subexpression Elimination

- Look for repetitions of the same computation. Eliminate them if result won't have changed and no side effects
- Avoid repeated calculation and eliminates redundant loads
- Idea: walk through basic block keeping track of available expressions



## Local Common Subexpression Elimination

- Look for repetitions of the same computation. Eliminate them if result won't have changed and no side effects
- Avoid repeated calculation and eliminates redundant loads
- Idea: walk through basic block keeping track of available expressions



## Local Common Subexpression Elimination

- Look for repetitions of the same computation. Eliminate them if result won't have changed and no side effects
- Avoid repeated calculation and eliminates redundant loads
- Idea: walk through basic block keeping track of available expressions



## Intraprocedural optimizations

- Enlarge scope of analysis to whole procedure
- more opportunities for optimization
- have to deal with branches, merges, and loops
- Can do constant propagation, common subexpression elimination, etc. at "global" level
- Can do new things, e.g. loop optimizations
- Optimizing compilers often work at this level (-O2)


## Code Motion

- Goal: move loop-invariant calculations out of loops
- Can do at source level or at intermediate code level

```
for (i = 0; i < 10; i = i+1) {
 a[i] = a[i] + b[j];
 z = z + 10000;
}
t1 = b[j];
t2 = 10000;
for (i = 0; i < 10; i = i+1) {
 a[i] = a[i] + t1;
 z = z + t2;
}
```


## Code Motion at IL

```
for (i = 0; i < 10; i = i+1) {
 a[i] = b[j];
}
 *(fp + ioffset) = 0;
label top;
 t0 = *(fp + ioffset);
 iffalse (t0 < 10) goto done;
 t1 = *(fp + joffset);
 t2 = t1 * 4;
 t3 = fp + t2;
 t4 = *(t3 + boffset);
 t5 = *(fp + ioffset);
 t6 = t5 * 4;
 t7 = fp + t6;
 *(t7 + aoffset) = t4;
 t9 = *(fp + ioffset);
 t10 = t9 + 1;
 *(fp + ioffset) = t10;
 goto top;
label done;
```


## Code Motion at IL



## Loop Induction Variable Elimination

- Common special case of loop-based strength reduction
- For-loop index is induction variable
- incremented each time around loop
- offsets \& pointers calculated from it
- If used only to index arrays, rewrite with pointers
- compute initial offsets/pointers before loop
- increment offsets/pointers each time around loop
- no expensive scaling in loop
- then do loopinvariant code motion

```
for (i = 0; i < 10; i = i+1){
 a[i] = a[i] + x;
}
for (p = &a[0]; p < &a[10]; p = p+4){
 *p = *p + x;
}
```


## Interprocedural Optimization

- Expand scope of analysis to procedures calling each other
- Can do local \& intraprocedural optimizations at larger scope
- Can do new optimizations, e.g. inlining


## Inlining: replace call with body

- Replace procedure call with body of callee
- Source:

```
final double pi = 3.1415927;
double circle_area(double radius) {
return pi * (radius * radius);
```

Especially important for object getter/setter methods, to avoid overhead for these frequent but trivial procedure calls
\}
. .
double $r=5.0 ;$
double a = circle_area(r);

- After inlining:
double r = 5.0;
double a = pi * r * r;

```
Actually, closer to this:
 double t = r
 double a = pi * t * t
And worry about scopes, etc.
```

- (Then what? Constant propagation/folding)


## Data Structures for Optimizations

- Need to represent control and data flow
- Control flow graph (CFG) captures flow of control
- nodes are IL statements, or whole basic blocks
- edges represent (all possible) control flow
- node with multiple successors = branch/switch
- node with multiple predecessors = merge
- cycle in graph = loop
- Data flow graph (DFG) captures flow of data, e.g. def/use chains:
- nodes are def(inition)s and uses
- edge from def to use
- a def can reach multiple uses
- a use can have multiple reaching defs (different control flow paths, possible aliasing, etc.)
- SSA: another widely used way of linking defs and uses


## Analysis and Transformation

- Each optimization is made up of
- some number of analyses
- followed by a transformation
- Analyze CFG and/or DFG by propagating info forward or backward along CFG and/or DFG edges
- merges in graph require combining info
- loops in graph require iterative approximation
- Perform (improving) transformations based on info computed
- Analysis must be conservative/safe/sound so that transformations preserve program behavior


## Example: Constant Propagation, Folding

- Can use either the CFG or the DFG
- CFG analysis info: table mapping each variable in scope to one of:
- a particular constant
- NonConstant
- Undefined
- Transformation at each instruction:
- If an assignment of a constant to a variable, set variable as a constant with known value
- If reference to a variable that the table maps to a constant, then replace with that constant (constant propagation)
- if r.h.s. expression involves only constants, and has no side-effects, then perform operation at compile-time and replace r.h.s. with constant result (constant folding)
- For best analysis, do constant folding as part of analysis, to learn all constants in one pass


## Merging data flow analysis info

- Constraint: merge results must be sound
- if something is believed true after the merge, then it must be true no matter which path we took into the merge
- only things true along all predecessors are true after the merge
- To merge two maps of constant information, build map by merging corresponding variable information
- To merge information about two variables:
- if one is Undefined, keep the other
- if both are the same constant, keep that constant
- otherwise, degenerate to NonConstant (NC)


## Example Merges



## Example Merges



## How to analyze loops

```
i = 0;
x = 10;
y = 20;
while (...) {
 // what's true here?
 i = i + 1;
 y = 30;
}
// what's true here?
... x ... i ... y ...
```

- Safe but imprecise: forget everything when we enter or exit a loop
- Precise but unsafe: keep everything when we enter or exit a loop
- Can we do better?


## Loop Terminology



## Optimistic Iterative Analysis

- Initially assume information at loop head is same as information at loop entry
- Then analyze loop body, computing information at back edge
- Merge information at loop back edge and loop entry
- Test if merged information is same as original assumption
- If so, then we're done
- If not, then replace previous assumption with merged information,
- and go back to analysis of loop body


## Example

$$
\begin{aligned}
& \mathbf{i}=0 ; \\
& \mathbf{x}=10 ; \\
& \mathbf{y}=20 ;
\end{aligned}
$$

while (...) \{
// what's true here? $\quad i=0, x=10, y=20$

$$
i=i+1 ;
$$

$$
y=30 ;\}
$$

// what's true here?

$$
i=1, x=10, y=30
$$

... $\mathbf{x}$... i ... $\mathbf{y}$...

## Example

$$
\begin{aligned}
& \mathbf{i}=0 ; \\
& \mathbf{x}=10 ; \\
& \mathbf{y}=20 ;
\end{aligned}
$$

while (...) \{
// what's true here?

... x ... i ... y

## Why does this work?

- Why are the results always conservative?
- Because if the algorithm stops, then
- the loop head info is at least as conservative as both the loop entry info and the loop back edge info
- the analysis within the loop body is conservative, given the assumption that the loop head info is conservative
- Will it terminate?
- Yes, if there are only a finite number of times we can merge information before reaching worst-case info (e.g., NonConstant / NC in this example)


## Termination - more generally

- Suppose alg has a "state" vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, each $x_{i}$ from a finite, ordered set, say $\{0,1\}$ or $\{1,2,3\}$
- If each state transition (iteration of an alg, such as prev few slides) allowed, say, $x_{i}$ to go up while $x_{j}$ goes down, then $\infty$ iteration is possible: $(0,1) \rightarrow(1,0) \rightarrow(0,1) \rightarrow \ldots$
- BUT, if alg ensures that, at each iteration, old $-x_{i} \leq n e w-x_{i}$, then termination is certain: You can only increase $x_{i}$ a finite number of times before you hit the top value
- E.g., if $x_{i} \in\{0,1\}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are corners of an $n$-cube; at worst, alg walks from ( $0,0, \ldots, 0$ ) to $(1,1, \ldots, 1)$ in $\leq n$ steps
- Math Jargon: such a structure is typically called a "lattice".


## More analyses

- Alias analysis
- Detect when different references may or must refer to the same memory locations
- Escape analysis
- Pointers that are live on exit from procedures
- Pointed-to data may "escape" to other procedures or threads
- Dependence analysis
- Determining which references depend on which other references
- One application: analyze array subscripts that depend on loop induction variables to determine which loop iterations depend on each other
- Key analysis for loop parallelization/vectorization


## Summary

- Optimizations organized as collections of passes, each rewriting IL in place into (hopefully) better version
- Each pass does analysis to determine what is possible, followed by transformation(s) that (hopefully) improve the program
- Sometimes "analysis-only" passes are helpful
- Often redo analysis/transformations again to take advantage of possibilities revealed by previous changes
- Presence of optimizations makes other parts of compiler (e.g. intermediate and target code generation) easier to write since they can defer to optimization pass to improve/clean up simple-and-easy-to-generate-correct-but-not-clever code

