
CSE 401/M501 – Compilers

Code Shape II – Objects & Classes
Hal Perkins
Spring 2023

UW CSE 401/M501 Spring 2023 L-1

Administrivia
• Reminder: midterm exam on Friday

– Topics + old exams online
– Review in section tomorrow (bring your questions!)
– Closed book but you can have one 5x8 notecard with

handwritten notes on both sides; blank cards available after
class along with sample solutions to hw3 (and hw1 and hw2)

• Semantics/typechecking project assignment due Tuesday,
May 16, 1 ½ weeks after the midterm
– Fair amount to do, so get started and work steadily; don’t ignore

completely until after midterm…
• And definitely plan to get a lot done this weekend starting with

symbol tables, Type ADT and methods, and other data structures
– Required check-in showing APIs for symbol table and type ADTs during May 11

sections - will award a point or something J

• New on the web today: info on CSE M 501 project
extensions – start thinking about this over the weekend

UW CSE 401/M501 Spring 2023 J-2

Agenda
• Object representation and layout
• Field access
• What is this?
• Object creation - new
• Method calls
– Dynamic dispatch
– Method tables
– Super

• Runtime type information

(As before, more generality than we actually need for the project)

UW CSE 401/M501 Spring 2023 L-3

What does this program print?
class One {

int tag;
int it;
void setTag() { tag = 1; }
int getTag() { return tag; }
void setIt(int it) { this.it = it; }
int getIt() { return it; }

}

class Two extends One {
int it;
void setTag() {

tag = 2; it = 3;
}
int getThat() { return it; }
void resetIt() { super.setIt(42); }

}

public static void main(String[] args) {
Two two = new Two();
One one = two;

one.setTag();
System.out.println(one.getTag());

one.setIt(17);
two.setTag();
System.out.println(two.getIt());
System.out.println(two.getThat());
two.resetIt();
System.out.println(two.getIt());
System.out.println(two.getThat());

}

UW CSE 401/M501 Spring 2023 L-4

Your Answer Here

UW CSE 401/M501 Spring 2023 L-5

Object Representation
• The naïve explanation is that an object contains:

– Fields declared in its class and in all superclasses
• Redeclaration of a field hides (shadows) superclass instance – but the

superclass field is still there and is in scope for, and accessed by,
superclass methods

– All methods declared in its class and all superclasses
• Redeclaration of a method overrides (replaces) – but overridden

methods can still be accessed by super. , and all relevant methods are
part of the object’s “behavior”

• When a method is called, the appropriate method “inside”
that particular object is called
– Regardless of the static (compile-time) type of the variable that

points to the object
– (But we really don’t want to copy/duplicate all those methods, do we?)

UW CSE 401/M501 Spring 2023 L-6

Actual representation
• Each object contains:
– Storage for every field (instance variable)

• Including all inherited fields (public or private or …)
– A pointer to a runtime data structure for its class

• Key component: method dispatch table (vtable, next slide)

• An object is basically a C struct
• Fields hidden (shadowed) by declarations in subclasses

are still allocated in the object and are accessible from
superclass methods (using offsets assigned as part of
superclass object layout)
– Subclass methods access new fields using offsets assigned

when subclass fields appended to superclass struct layout

UW CSE 401/M501 Spring 2023 L-7

Method Dispatch Tables

• One of these per class, not per object
• Often called “vtable”, “vtbl”, or “vtab”
– (virtual function table – term from C++; standard

term in all languages with dynamic dispatch)

• One pointer for each method in the vtable –
points to beginning of compiled method code

UW CSE 401/M501 Spring 2023 L-8

Method Tables and Inheritance
• A naïve, really simple implementation – dictionaries!
– One method table for each class containing names of

methods declared locally in that class (keys), with pointers
to compiled code for each method (values)

– Method table also contains a pointer to parent class
method table

– Method dispatch:
• Look in table for object’s class and use if method found
• Look in parent class table if not local
• Repeat
• “Message not understood” if you can’t find it after search

– Actually used in typical implementations of some dynamic
languages (e.g. Ruby, SmallTalk, etc.)

UW CSE 401/M501 Spring 2023 L-9

Better: O(1) Method Dispatch
• Idea: Method table for extended class has pointers to
all inherited and local methods for that class

• First part of method table for extended class has
pointers for the same methods in the same order as
the parent class
– BUT pointers actually refer to overriding methods if any
– So, dispatch for a method can be done with an indirect

jump using a fixed method offset known at compile time,
regardless of whether this points to an overriding method
• In C: (*(object->vtbl[offset]))(parameters)

• Pointers to additional methods declared (added) in
subclass are included in the vtable after pointers to
inherited or overridden superclass methods

UW CSE 401/M501 Spring 2023 L-10

Perverse Example Revisited
class One {

int tag;
int it;
void setTag() { tag = 1; }
int getTag() { return tag; }
void setIt(int it) {this.it = it;}
int getIt() { return it; }

}
class Two extends One {

int it;
void setTag() {

tag = 2; it = 3;
}
int getThat() { return it; }
void resetIt() { super.setIt(42); }

}

public static void main(String[] args) {
Two two = new Two();
One one = two;

one.setTag();
System.out.println(one.getTag());

one.setIt(17);
two.setTag();
System.out.println(two.getIt());
System.out.println(two.getThat());
two.resetIt();
System.out.println(two.getIt());
System.out.println(two.getThat());

}

L-11UW CSE 401/M501 Spring 2023

Implementation

UW CSE 401/M501 Spring 2023 L-12

codevtablesheapstack

Implementation

UW CSE 401/M501 Spring 2023 L-13

codevtablesheapstack

main

one

two

0 (parent)
8 setTag

16 getTag
24 setIt
32 getIt

0 (parent)
8 setTag

16 getTag
24 setIt
32 getIt
40 getThat
48 resetIt

One

Two

One::setTag

One::getTag

One::setIt

One::getIt

Two::setTag

Two::getThat

Two::resetIt

override
inherit

0 vtbl

8 tag _____

16 it _____

24 it _____

additional

Method Dispatch Footnotes

• Don’t need a pointer to parent class vtable to
implement method calls, but often useful for
other purposes
– Casts and instanceof

• Multiple inheritance requires more complex
mechanisms
– Also true for multiple interfaces

UW CSE 401/M501 Spring 2023 L-14

Now What?

• Need to explore
– Object layout in memory
– Compiling field references
• Implicit and explicit use of “this”

– Representation of vtables
– Object creation – new
– Code for dynamic dispatch
– Runtime type information – instanceof and casts

UW CSE 401/M501 Spring 2023 L-15

Object Layout

• Typically, allocate fields sequentially
• Follow processor/OS alignment conventions

for structs/objects when appropriate/available
– Include padding bytes for alignment as needed

• Use first word of object to hold pointer to
method table (vtable)

• Objects are allocated on the heap (in Java)
– Unlike C++ where objects can also be on stack
– No bytes reserved for object data in generated

code – use either heap or stack as appropriate

UW CSE 401/M501 Spring 2023 L-16

Object Field Access

• Source
int n = obj.fld;

• x86-64
– Assuming that obj is a local variable in the current

method’s stack frame
movq offsetobj(%rbp),%rax # load obj ptr
movq offsetfld(%rax),%rax # load fld
movq %rax,offsetn(%rbp) # store n (assignment stmt)

– Same idea used to reference fields of “this”
• Use implicit “this” parameter passed to method instead of a

local variable to get object address

UW CSE 401/M501 Spring 2023 L-17

Local Fields

• A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
as “f”
– Both compile to the same code – an implicit

“this.” is assumed if not written explicitly
– A pointer to the object (i.e., “this”) is an implicit,

hidden parameter to all methods

UW CSE 401/M501 Spring 2023 L-18

Source Level View

What you write:
int getIt() {
return it;

}
void setIt(int it) {
this.it = it;

}
…
obj.setIt(42);
k = obj.getIt();

What the compiler really does:
int getIt(Objtype this) {
return this.it;

}
void setIt(ObjType this, int it) {
this.it = it;

}
…
setIt(obj, 42);
k = getIt(obj);

UW CSE 401/M501 Spring 2023 L-19

x86-64 “this” Convention (C++)

• “this” is an implicit first parameter to every
non-static method

• Address of object (“this”) placed in %rdi for
every non-static method call

• Remaining parameters (if any) in %rsi, etc.

• We’ll use this convention in our project

UW CSE 401/M501 Spring 2023 L-20

MiniJava Method Tables (vtbls)

• Generate these as initialized data in the assembly
language source program

• Need to pick a naming convention for assembly
language labels. This will work for us:
– For methods, classname$methodname

• Need something more sophisticated for overloading
– For the vtables themselves, classname$$

• First method table entry points to superclass table (we
might not use it in our project, but is helpful if you add
instanceof or type cast checks, and can be useful for
debugging to find parent vtbl)

UW CSE 401/M501 Spring 2023 L-21

Method Tables For Perverse Example
(gcc/as syntax)

class One {
void setTag() { … }
int getTag() { … }
void setIt(int it) {…}
int getIt() { … }

}

class Two extends One {
void setTag() { … } // override
int getThat() { … } // additional
void resetIt() { … }

}

.data
One$$: .quad 0 # no superclass

.quad One$setTag

.quad One$getTag

.quad One$setIt

.quad One$getIt

Two$$: .quad One$$ # superclass
.quad Two$setTag
.quad One$getTag
.quad One$setIt
.quad One$getIt
.quad Two$getThat
.quad Two$resetIt

UW CSE 401/M501 Spring 2023 L-22

Method Table Layout

Key point: First entries in Two’s method table
are pointers to methods in exactly the same
order as in One’s method table
– Actual pointers reference method appropriate for

objects of each class (inherited or overridden)
\ Compiler knows correct offset for a particular
method pointer regardless of whether that
method is overridden and regardless of the
actual type (dynamic) or subclass of the object
referenced by the variable (the pointer)

UW CSE 401/M501 Spring 2023 L-23

Object Creation – new

Steps needed
– Call storage manager (malloc or equivalent) to get the

raw bytes
– Initialize bytes to 0 (for Java, not in e.g., C++ *)
– Store pointer to method table (vtbl) in the first 8 bytes

of the object
– Call a constructor with “this” pointer to the new

object in %rdi and other parameters as needed
• (Not in MiniJava since we don’t have constructors)

– Result of new is a pointer to the new object

*Recent versions of C++ have new strange and wonderous rules about default initialization. Left
as an exercise for aspiring programming language lawyers.

UW CSE 401/M501 Spring 2023 L-24

Object Creation
• Source

One one = new One(…);
• x86-64

movq $nBytesNeeded,%rdi # obj size + 8 (include space for vtbl ptr)
call mallocEquiv # addr of allocated bytes returned in %rax
<zero out allocated object, or use calloc instead of malloc to get the bytes>
leaq One$$(%rip),%rdx # get method table address
movq %rdx,0(%rax) # store vtbl ptr at beginning of object
movq %rax,%rdi # set up “this” for constructor
movq %rax,offsettemp(%rbp) # save “this” for later (or maybe pushq)
<load constructor arguments> # arguments (if needed)
call One$One # call ctor if we have one (no vtbl lookup)
movq offsettemp(%rbp),%rax # recover ptr to object
movq %rax,offsetone(%rbp) # store object reference in variable one

UW CSE 401/M501 Spring 2023 L-25

Constructor

• Why don’t we need a vtable lookup to find the
right constructor to call?

• Because at compile time we know the actual class
(it says so right after “new” !), so we can generate
a call instruction to a known label
– Same with super.method(…) or superclass constructor

calls – at compile time we know all of the superclasses
(need superclass details to compile subclass and
construct method tables), so we know statically which
class “super.method” belongs to

UW CSE 401/M501 Spring 2023 L-26

Method Calls

• Steps needed
– Parameter passing: just like an ordinary C

function, except load a pointer to the object in
%rdi as the first (“this”) argument

– Get a pointer to the object’s method table from
the first 8 bytes of the object

– Jump indirectly through the method table

UW CSE 401/M501 Spring 2023 L-27

Method Call
• Source

obj.method(…);
• x86-64

<load arguments into registers as usual> # as needed
movq offsetobj(%rbp),%rdi # first argument is obj ptr (“this”)
movq 0(%rdi),%rax # load vtable address into %rax
call *offsetmethod(%rax) # call function whose address is at

the specified offset in the vtable *

*Can get same effect with: addq $offsetmethod,%rax
call *(%rax)

or with: movq $offsetmethod(%rax),%rax
call *%rax

UW CSE 401/M501 Spring 2023 L-28

Runtime Type Checking
• We can use the method table for the class as a “runtime

representation” of the class
– Each class has one vtable at a unique address

• The test for “o instanceof C” is:
– Is o’s method table pointer == &C$$?

• If so, result is “true”
– Recursively, get pointer to superclass method table from the

method table and check that
– Stop when you reach Object (or a null pointer, depending on

whether there is a ultimate superclass of everything)
• If no match by the top of the chain, result is “false”

• Same test as part of check for legal downcast (e.g., how to
check for ClassCastException in (type)obj cast)

UW CSE 401/M501 Spring 2023 L-29

Coming (& past) Attractions

• Simple code generation for the project
(Later when we get closer to finishing semantics)

And more compiler topics:
• Other IRs besides ASTs (done already 22au)
• Survey of code optimization
• Industrial-strength register allocation, instruction

selection, and scheduling
• Dynamic languages? JVM? Other things?

UW CSE 401/M501 Spring 2023 L-30

