CSE 401/M501 — Compilers

LR Parser Construction

Hal Perkins
Spring 2023

UW CSE 401/M501 Spring 2023

E-1

Administrivia (1)

e HW1 sample solutions handed out after class Wednesday. Might be
some use finishing up scanner project. Grades/feedback out soon.

e Scanners due Thursday, 11 pm — how’s it going?

— Must read Minilava overview as well as scanner assignment & reread
again when you think you’re “done”
e Be sure to implement both kinds of comments
e Be sure to look carefully at MiniJava grammar to discover tokens

* Anything “quoted” in the Minilava project grammar should be treated as a
reserved word (token) in Minilava, even if it’s not in full Java

— Scanner should continue after “invalid input character” errors
— Be sure to terminate with correct System.exit code (0=0k, 1=errors)

— Take advantage of JFlex regexp operations that go beyond basic
regexps presented in class and used on hw1 if they are useful

— Don’t implement the parser just yet — plenty of time for that...

— Reminder: you have a partner(!) — be sure to take advantage
» Discussion board/email: never “I have a question” or “l am confused”
* Rather: “We are confused” or “We have a question” ©

UW CSE 401/M501 Spring 2023 E-2

Administrivia (2)

* Upcoming attractions:

— Today/Wednesday and in sections this week: LR
parsing and LR parser construction

— HW?2 (written questions on grammars, LR parsing) out
shortly, due next Thur.

— Friday/Monday lectures: LR parsing conflicts,
first/follow, abstract syntax trees and visitor pattern

— Next part of the project, Parser + AST visitors, out
early next week, due a week and a half later
* More details in lectures and sections next week

UW CSE 401/M501 Spring 2023 E-3

New Administrivia (added Wed.)

 Two handouts today at the front of the room:
— A few slides for reference during lecture
— Written hw1 sample solutions

* hwl grades/feedback will be posted after class

 Written hw2 out now, due a week from
Thursday. Covers LR parsing and parser
construction.

* Reminder: scanners due tomorrow night,
11pm. Try not to burn a late day on this one.

UW CSE 401/M501 Spring 2023 E-4

Agenda

e LR(0) state construction
 FIRST, FOLLOW, and nullable
e Variations: SLR, LR(1), LALR

UW CSE 401/M501 Spring 2023

E-5

LR State Machine

* |dea: Build a DFA that recognizes handles

— Language generated by a CFG is generally not
regular, but

— Language of viable prefixes for a CFG is regular

* So a DFA can be used to recognize handles

— LR Parser reduces when DFA accepts a handle

UW CSE 401/M501 Spring 2023

E-6

Prefixes, Handles, &c (review)

e If Sis the start symbol of a grammar G,
— If S =>* o then ais a sentential form of G

— v is a viable prefix of G if there is some derivation
S=>* oAw =>_ affw and vy is a prefix of a3
* These are the strings that can appear on the LR parser stack
— The occurrence of 3 in apw is the right side of a handle of
ofw
* Anitem is a marked production (a . at some position
in the right hand side)

— A= XY] [Au=X.Y] [Au=XY.]

UW CSE 401/M501 Spring 2023 E-7

Building the LR(O) States

 Example grammar

§'::=8S
Su=(L)
Su=X
L::=
L::=L,S

— We add a production S’ with the original start symbol
followed by end of file (S)

* We accept if we reach the end of S in this production
— Question: What language does this grammar generate?

UW CSE 401/M501 Spring 2023

E-8

0. §::=5%
Start of LR Parse) et
43}: fﬁ:f,s

* |nitially
— Stack is empty

* (except for start state number usually)
— Input is the right hand side of §/, i.e., S S
— Initial configuration is [S” ::=. S §]

— But, since position is just before S, we are also just
before anything that can be derived from S

UW CSE 401/M501 Spring 2023 E-9

0. §::=5%
Initial state 2 Sy
3. L:=5
4. L::=L, S
Si=,8¢%—start
Sii=.(L),
Grizm y « — completion

* Astateis just a set of items
— Start: an initial set of items

— Completion (or closure): additional productions whose
left-hand side nonterminal appears immediately to the
right of a dot in some item already in the state

UW CSE 401/M501 Spring 2023 E-10

0. §::=5%
Shift Actions (1) eyl
3. L::=5
4, L:=L, S
Si=.5% y
Sii=.(L) 1 Sii=X.
S:ii=.X

* To shift past the x, add a new state with appropriate item(s),
including their closure
— In this case, a single item; the closure adds nothing
— This state will lead to a reduction since no further shift is possible

UW CSE 401/M501 Spring 2023 E-11

0. §::=5%
Shift Actions (2) eyl
: f:fs

Si=(.L)
St=.5%$| (|[Lx=.L,S
Si=.(L) "Lo=.8
S.=.X S:=.(L)

S.=.X

* |If we shift past the (, we are at the beginning of L

* The closure adds all productions that start with L
— and that requires adding all productions starting with S

UW CSE 401/M501 Spring 2023 E-12

0. §::=5%
Goto Actions) et
43}: fﬁ:f,s

S5i=.5%|
S::=.(L) " Si=5.%
Sii=.X

* Once we reduce S, we'll pop the rhs from the
stack exposing a previous state. Add a goto
transition on S for this (i.e., if we back up into this
state having reduced arhs to S, then we need a
goto transition on S to another state)

UW CSE 401/M501 Spring 2023 E-13

Basic Construction Operations

e Closure (S)

— Adds all items implied by items already in S
e Goto (I, X)

— | is a set of items

— X'is a grammar symbol (terminal or non-terminal)

— Goto moves the dot past the symbol X in all
appropriate items in set /

UW CSE 401/M501 Spring 2023 E-14

Closure Algorithm

* Closure (S) =
repeat
foranyitem[A:=a.Bf]inS
for all productions B ::=y
add [B::=.y]to S
until S does not change
return S

* Classic example of a fixed-point algorithm

UW CSE 401/M501 Spring 2023 E-15

Goto Algorithm

e Goto (I, X) =
set new to the empty set
foreachitem[A:=a.X B]in/
add [A ::=a X. 3] to new
return Closure (new)

* This may create a new state, or may return an
existing one

UW CSE 401/M501 Spring 2023 E-16

LR(0) Construction

First, augment the grammar with an extra
start production S’ ::=S S

et T be the set of states

et £ be the set of edges

nitialize T to Closure ([S”::=.5S])
nitialize E to empty

UW CSE 401/M501 Spring 2023

E-17

LR(0) Construction Algorithm

repeat
foreachstate/inT
foreachitem[A::=a.X B]in/
Let new be Goto(I, X)
Add new to T if not present
Add | 25 new to E if not present
until £ and T do not change in this iteration

* Footnote: For the marker S, we don’t compute goto(/, S); instead, we
make this an accept action.

UW CSE 401/M501 Spring 2023 E-18

0. §::=5%
Example: States for) Sy

3. L::=5

4. L=1,5

UW CSE 401/M501 Spring 2023 E-19

0. §::=5%
1. S::=(L
Example: States for ;S
3. L::=5
4, L:=L, S
1 s O
QS’::=.5$ Si=5.%
st x G :
— | S:=X.[*
(
o |
Siu=(.L1)
L:=.5 | _ (/
(CL::=.L,5‘ 5 Li=L,.5
Su=.(L)L Su=(L.) I Su=.(L)
Si=.X L::=L.,S Si=.X
4 51 (6))J (8) 51
9[=5 S:i=(L). L.:=L,S

UW CSE 401/M501 Spring 2023 E-20

Building the Parse Tables (1)

* Foreach edge! =)

— if X'is a terminal, put sj in column X, row / of the
action table (shift to state j)

— If X'is a non-terminal, put gj in column X, row / of
the goto table

UW CSE 401/M501 Spring 2023 E-21

Building the Parse Tables (2)

* For each state / containing an item
S’ :=5.5], put accept in column S of row /

* Finally, for any state containing

A ::=v.] put action rn (reduce) in every
column of row I in the table, where n is the
production number

—i.e., when it reaches this state, the DFA has
discovered that A ::=y is a handle, so the parser
should reduce yto A

UW CSE 401/M501 Spring 2023 E-22

0O N o ol A W N R O

0. §::=5%
. 1. S::=(L)
Example: Tables for) Simx
3. L::=5
4. L::=L, S
() X S S L
(1) S @—
5u=.5% Si=5.%
_>§:>(<L) X @— X
('5..TX.
®5--—' N
(CL;;;.('S) (o L
é}};'_f’j L :i Su=(L.) Si=. (1)
Si=.X Su=L.,S Si=.X
S) S
4L =5. 6iS::=(L). 8L"=L,S.
UW CSE 401/M501 Spring 2023 E-23

—~)
B n

~ ~
S(XS/_
Lo
hne J4

SN M

: Tables for

Example

"3 %
I(X ~
N . ~
TR RV)
®
X
@ 9 | A
N . ~ . ~
N x ”_\/_ ~
. I o~
Ol |9 0 0 0
o ~N) A LN A
) = = -
S 3 N3 :
CW(X PRGN RN)
- - '(- - - - __
L L T e -
TR eoIloIloanoan]
nhnhn GS/_/_SS <
s ﬁ N
LN
(o]Y)
o < o0
(o]Y) oo (o]Y)
o ~N N — <
O — — — —
o\ on N - <
— — (V)] — —
N N &N ™M - N <
(%] — wn — — (7)) —
o\ Nn O - <
— — (V)] — —
N N 0N oM - o <
(%] — wn — — wn —
O v N O < 10 O I~ o0

E-24

UW CSE 401/M501 Spring 2023

Where Do We Stand?

* We have built the LR(0) state machine and
parser tables
— No lookahead yet

— Different variations of LR parsers add lookahead
information, but basic idea of states, closures, and
edges remains the same

A grammar is LR(O) if its LR(O) state machine

(equiv. parser tables) has no shift-reduce or

reduce-reduce conflicts.

UW CSE 401/M501 Spring 2023 E-25

A Grammar that is not LR(0)

e Build the state machine and parse tables for a
simple expression grammar

S:=ES
E:=T+E
E:=T

T:i=x

UW CSE 401/M501 Spring 2023 E-26

LR(O) Parser for

.ES$

@
S
E
E
T

Il
X

. T+E

v

\ 4

®
T::

=X.

v

®

E::=T+E.

A

y

0. S::=EF$
1. Exi=T+ E
2. Ei=T
3. 7T::=X
@ X + $ E T
S::=E.$ 1 = g2 g3
2 acc
@ 3 r2 s4,r2 r2
EiT'l'E 4 s5 g6 g3
: - 5 r3 r3 r3
@ + T 6 rl rl rl
E:=T+.E = State 3 is has two possible
E::=.T+E actions on +
E::=.T .
T = x = shift 4, or reduce 2

= .. Grammar is not LR(0)

UW CSE 401/M501 Spring 2023 E-27

How can we solve conflicts like this?

* |dea: look at the next symbol after the handle before
deciding whether to reduce
* Easiest: SLR —Simple LR. Reduce only if next input
terminal symbol could follow resulting nonterminal
— Suppose we’'ve reached [A ::= B .] and the next input is x
— Don’t reduce unless Ax can appear in some sentential form
* More complex: LR and LALR. Store lookahead
symbols in items to keep track of what can follow a
particular instance of a reduction
— LALR used by YACC/Bison/CUP; we won’t examine in detail

UW CSE 401/M501 Spring 2023 E-28

SLR Parsers

e |dea: Use information about what can follow a non-
terminal to decide if we should perform a reduction;
don’t reduce if the next input symbol can’t ever
follow the resulting non-terminal

 We need to be able to compute FOLLOW(A) — the set
of terminal symbols that can follow A in some
possible derivation

— i.e., tisin FOLLOW(A) if there is some possible derivation
that contains At

— To compute this, we need to compute FIRST(y) for strings y
that can follow A

UW CSE 401/M501 Spring 2023 E-29

Calculating FIRST(y)

* Sounds easy... Ify=XYZ, then FIRST(y) is
FIRST(X), right?

— But what if we have the rule X ::= €?

— In that case, FIRST(y) includes anything that can follow
X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y
can derive g, FIRST(Z), and if Z can derive s, ...

— So computing FIRST and FOLLOW involves knowing
FIRST and FOLLOW for other symbols, as well as which
ones can derive €

UW CSE 401/M501 Spring 2023 E-30

FIRST, FOLLOW, and nullable

* nullable(X) is true if X can derive the empty string

* Given a string y of terminals and non-terminals, FIRST(y)
is the set of terminals that can begin strings derived
fromy

— For SLR we only need this for single terminal or non-terminal
symbols, not arbitrary strings y

* FOLLOW(X) is the set of terminals that can immediately
follow X in some derivation

* All three of these are computed together

Footnote: Textbook doesn’t use a separate nullable(X) attribute, instead it indicates nullable
by including € in FIRST(X). Both will wind up with same results, but one or the other might be

easier to follow, so to speak..

UW CSE 401/M501 Spring 2023 E-31

Computing FIRST, FOLLOW, and
nullable (1)

* |nitialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a

* Repeatedly apply four simple observations to
update these sets

— Stop when there are no further changes
— Another fixed-point algorithm

UW CSE 401/M501 Spring 2023 E-32

Computing FIRST, FOLLOW, and
nullable (2)

repeat
for each production X:=Y; Y, Y5 ... Y, Y1 Y
if Y, ... Y, are all nullable (or if k=0)
set nullable[X] = true
for eachi from 1to kand eachj fromi+1tok
if Y, ... Y., are all nullable (orif i = 1)
add FIRST[Y;] to FIRST[X]
if Y., ... Y areall nullable (orifi=k)
add FOLLOWI[X] to FOLLOWI[Y/]
if Yi,1 ... Y; 4 are all nullable (or if i+1=j)
add FIRST[Y;] to FOLLOW([Y}]
Until FIRST, FOLLOW, and nullable do not change

UW CSE 401/M501 Spring 2023

ONORORNC

E-33

Computing FIRST, FOLLOW, & nullable (3)

Y | = nullable
® @

if | X | =¥ | Y2 |¥a]| | ¥|: if | X =Y Y| Y] | Y]
make | X | nullable copy FIRST[Y3] to FIRST[X]

if | X | =Y | Y| ¥a]| | ¥ |: if | X =Y Y| Y] | Y]
\/ v

copy FOLLOWI[X] to FOLLOWIY,] copy FIRST[Y;] to FOLLOW[Y,]

UW CSE 401/M501 Spring 2023 E-34

Example (initial)

* Grammar nullable FIRST FOLLOW
Z:=d
Z:=XYZ xono
Yi=¢
Yi=cC
Xa=Y rone
X:=a
Z no

UW CSE 401/M501 Spring 2023 E-35

Example (final)

Grammar

X X < < N N

=d
=XYZ
S
= C
=Y

..=d

nullable
X neyes
Y nevyes
Z no

FIRST

UW CSE 401/M501 Spring 2023

FOLLOW

E-36

LR(O) Reduce Actions (review)

* |In a LR(O) parser, if a state contains a
reduction, it is unconditional regardless of the

next input symbol
* Algorithm:
Initialize R to empty
foreach state/ in T
foreachitem[A:=a.]in/
add (/,A::=a) to R

UW CSE 401/M501 Spring 2023 E-37

SLR Construction

e This is identical to LR(0) — states, etc., except for the

calculation of reduce actions
* Algorithm:
Initialize R to empty
foreachstate/ in T
foreachitem [A:=a.]in/
for each terminal a in FOLLOW/(A)
add (/,a,A::=a)toR

— i.e., reduce o to A in state /| only on lookahead a

UW CSE 401/M501 Spring 2023

E-38

0. S::
1. E::=T+E
SLR Parser for S EeoT
3. T:i=x
@ @ x o+ & E T
Su=.E$ |-[Su=E.$ 1| s @2 g3
E::=.T+E 2 acc
Eo=.T T@ 3 s4 r2
T::=.X :E:T_I_E . o ” 3
X 5 r3 r3
@ l @ + T 6 rl
LR SN e
(6) Ex=.T+E
E:=T+E o dEi=-T
E::=.x

UW CSE 401/M501 Spring 2023 E-39

On To LR(1)

 Many practical grammars are SLR
* LR(1) is more powerful yet

* Similar construction, but notion of an item is
more complex, incorporating lookahead
information

— So lookahead information is associated with
specific items rather than FOLLOW for a non-
terminal regardless of specific context where that
non-terminal appears in the derivation

UW CSE 401/M501 Spring 2023 E-40

LR(1) ltems

* AnLR(1)item[A:=a.[3, a]is
— A grammar production (A ::= o)

— A right hand side position (the dot)
— A lookahead symbol (a)

* |dea: This item indicates that a is the top of
the stack and the next input is derivable
from Pa.

* Full construction: see the book(s)

UW CSE 401/M501 Spring 2023 E-41

LR(1) Tradeoffs

e LR(1)
— Pro: extremely precise; largest set of grammars

— Con: potentially very large parse tables with many
states

UW CSE 401/M501 Spring 2023 E-42

LALR(1)

e Variation of LR(1), but merge any two states
that differ only in lookahead

— Example: these two would be merged
[A:=x.vy, a]
[A:=x.vy, b]

UW CSE 401/M501 Spring 2023 E-43

LALR(1) vs LR(1)

 LALR(1) tables can have many fewer states than LR(1)

— Somewhat surprising result: will actually have same
number of states as SLR parsers, even though LALR(1) is

more powerful because of the more fine-grained
lookahead info in the states

— After the merge step, LALR(1) acts like SLR parser with
“smarter” FOLLOW sets (can be specific to particular
handles)

* LALR(1) may have reduce conflicts where LR(1) would
not (but in practice this doesn’t happen often)

* Most practical bottom-up parser tools are LALR(1)
(e.g., yacc, bison, CUP, ...)

UW CSE 401/M501 Spring 2023 E-44

Language Hierarchies

unambiguous grammars ambiguous
grammars
/ LK) D\ LR(K)

(" LL(1) LR(1)

LR(0)
|

UW CSE 401/M501 Spring 2023 E-45

Coming Attractions

Lecture
e ASTs and Visitor pattern
e LL(k) Parsing — Top-Down
* Recursive Descent Parsers
— What you can do if you want a parser in a hurry

Sections next week
e AST construction — what do do while you parse!

 Visitor Pattern details — how to traverse ASTs for
further processing (type checking, code gen, ...)

UW CSE 401/M501 Spring 2023 E-46

