
CSE	401/M501	23sp	Homework	4	

Due:	Thursday,	June	1	by	11	pm.		As	before,	please	use	Gradescope	(linked	from	the	CSE	401/M501	web	
page)	to	submit	your	homework	online.		
	
- Unreadable	solutions	cannot	be	graded--no	blurry	photos,	poor	contrast,	or	illegible	handwriting,	please.	
- Type-written	solutions	are	encouraged	but	not	required.		Hand-written	solutions	are	fine	if	legible.	
- If	possible,	don't	split	the	solution	to	a	problem	across	a	page	break.	
	
We	suggest	you	show	your	work	to	help	us	award	partial	credit	if	appropriate,	and	for	TA	sanity.	You	should	
do	this	assignment	individually.	
	
	
The	first	questions	are	based	on	the	following	program,	given	as	a	sequence	of	3-address	instructions	
(Appel).	
	

1. m	=	0	
2. v	=	0	
3. if	v	>=	n	goto	#15	
4. r	=	v	
5. s	=	0	
6. if	r	<	n	goto	#9	
7. v	=	v	+	1	
8. goto	#3	
9. x	=	M[r]																												#	M[k]	denotes	contents	of	element	k	of	array	M	
10. s	=	s	+	x	
11. if	s	<=	m	goto	#13	
12. m	=	s	
13. r	=	r	+	1	
14. goto	#6;	
15. return	m	

	
	
1.	(leaders,	basic	blocks,	and	control	flow	graphs)		(a)	List	the	numbers	of	the	instructions	above	that	are	
leaders	(a	first	instruction	in	some	basic	block).		Hint:	recall	that	the	first	instruction	(#1)	is	a	leader,	the	
target	of	every	branch/jump/goto	is	a	leader,	and	every	instruction	following	a	branch/jump/goto	is	a	
leader.	
	
(Hint:	The	discussion	of	basic	blocks	and	how	to	identify	leaders	in	the	Intermediate	Representations	(IR)	
lecture	might	be	helpful.)	
	
(question	continued	on	next	page)	
	

	 	



CSE	401/M501	23sp	Homework	4	

1.	(b)	Draw	the	Control	Flow	Graph	(CFG)	for	this	program.		The	nodes	in	the	graph	should	be	basic	blocks.		
Each	basic	block	starts	with	a	leader	instruction	and	should	contain	all	subsequent	instructions	up	to	but	not	
including	the	next	leader	that	begins	a	different	basic	block.		There	should	be	edges	from	each	basic	block	to	
each	of	its	successors.	
	
Each	basic	block	should	show	in	sequential	order	the	instructions	contained	in	it.		Write	both	the	
instruction(s)	and	their	original	instruction	number(s)	in	the	CFG	graph	nodes.	
	
Please	number	the	basic	blocks	in	your	CFG	as	follows	so	the	graphs	will	be	consistent	for	grading:	The	first	
basic	block	beginning	with	instruction	#1	should	be	basic	block	#1.		The	remaining	basic	blocks	should	be	
given	sequential	numbers	2,	3,	…	in	the	same	ascending	order	that	their	leader	instructions	appear	in	the	
original	program.		In	other	words,	the	first	instruction	in	block	2	should	have	a	larger	instruction	number	
than	the	first	instruction	in	block	1	and	a	smaller	instruction	number	than	the	first	instruction	in	block	3,	
etc..	
	
2.	(dataflow	analysis	–	live	variables)		(a)	Use	the	dataflow	analysis	framework	described	in	class	to	
compute	the	set	of	variables	that	are	live	at	the	beginning	of	each	basic	block	in	the	control	flow	graph	from	
question	#1.	
	
Recall	that	the	live	variable	dataflow	problem	is	formulated	from	the	following	sets.		For	each	basic	block	b,	
define	
	

• use[b]	=	variables	used	in	b	before	any	def	
• def[b]	=	variables	defined	in	b	
• in[b]	=	variables	live	on	entry	to	b	
• out[b]	=	variables	live	on	exit	from	b	

	
To	compute	the	variables	that	are	live	at	the	beginning	of	each	basic	block	b	(i.e.,	in[b]),	first	initialize	
	
	 in[b]	=	out[b]	=	∅	
	
Then	iteratively	solve	the	following	set	of	equations	by	updating	the	in	and	out	sets	for	each	block	until	no	
further	changes	occur:	
	

• in[b]	=	use[b]	È	(out[b]	–	def[b])	

• out[b]	=	ÈsÎsucc[b]	in[s]	
	
Your	analysis	should	include	all	of	the	scalar	variables	in	the	original	program,	but	not	the	array	M.	
	
Use	the	instruction	and	block	numbers	and	the	control	flow	graph	from	your	answer	to	problem	1.	
	
(b)	Are	any	variables	in	the	program	uninitialized?		(that	is,	potentially	used	before	they	are	defined?).		
Justify	your	answer	in	terms	of	the	results	of	the	live	variable	dataflow	analysis	from	part	(a).	
	
	

	 	



CSE	401/M501	23sp	Homework	4	

3.	(dominators)	(based	on	Cooper/Torczon	2nd	ed.,	ex	6.	p.	536-7)	Compute	the	dominator	tree	for	the	
following	CFG,	then	compute	the	dominance	frontier	of	each	node	in	the	graph.	
	

	
	
	
	
4.	(ssa)	Translate	the	CFG	from	the	previous	problem	into	SSA	form.		You	only	need	to	show	the	final	graph	
after	Φ-functions	have	been	added	and	variables	have	been	renamed.		(If	you	want	to	edit	your	answer	on	a	
computer,	the	course	assignment	calendar	page	contains	a	link	to	the	original	ppt	slide	with	the	above	
diagram.		However,	don’t	feel	obligated	to	do	this	–	it	might	turn	into	quite	a	time	sink	compared	to	just	
drawing	the	result.)	
	
Your	answer	should	include	all	of	the	Φ-functions	required	by	the	Dominance	Frontier	Criteria	(or	
alternatively	the	path	convergence	criteria,	which	places	the	same	set	of	Φ-functions),	but	no	additional	
ones.		In	other	words,	you	need	to	include	all	of	the	Φ-functions	to	satisfy	the	criteria	but	should	not	have	
extra	ones	that	are	not	required.		It	should	include	all	Φ-functions	that	satisfy	the	Dominance	Frontier	
Criteria	even	if	some	of	those	are	assignments	to	variables	that	are	never	used	(i.e.,	dead	assignments).		
Answers	that	have	a	couple	of	extraneous	Φ-functions	will	receive	almost	full	credit,	but	answers	that,	for	
example,	use	a	maximal-SSA	strategy	of	placing	Φ-functions	for	all	variables	at	the	beginning	of	every	block	
will	not	be	looked	on	with	favor.	

a = a + 1
d = a + b

B0

f = b – dB1 f = d * 8
b = a + f

B2

d = b * 2
b = a + 1

B3 d = b + 1B4

b = b - dB5

f = b + d
d = a + b

B6


