
Dataflow Analysis + SSA
CSE 401/M501 Sections



Announcements
● 401 CodeGen hard deadline – SATURDAY 11pm no matter what late days used before.  Must 

commit/push/tag by Sat. 11pm, not later

● 401 report due next Monday 11pm (no late days); M501 project/report due as written on 
assignment

● HW4 due next Thursday, 11 pm
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Overview of Dataflow Analysis

IR

Dataflow 
Analysis

Optimization

Single Static 
Assignment

- A framework for exposing properties about programs

- Operates using sets of “facts”

- Just the initial discovery phase

- Changes can then be made to optimize based on the 
analysis



Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):

- IN(b): facts true on entry to b

- OUT(b): facts true on exit from b

- GEN(b): facts created (and not killed) in b

- KILL(b): facts killed in b



Reaching Definitions (A Dataflow Problem)

“What definitions of each variable might reach this point”

- Could be used for:
- Constant Propagation
- Uninitialized Variables

int x;

if (y > 0) {
x = y;

} else {
x = 0;

}

System.out.println(x);“x=y”, “x=0”



Reaching Definitions (A Dataflow Problem)

“What definitions of each variable might reach this point”

- Be careful: Does not involve the
value of the definition

- The dataflow problem
“Available Expressions”
is designed for that

int x;

if (y > 0) {
x = y;

} else {
x = 0;

}

y = -1;
System.out.println(x);still: “x=y”, “x=0”



Equations for Reaching Definitions

- IN(b): the definitions reaching upon entering block b

- OUT(b): the definitions reaching upon exiting block b

- GEN(b): the definitions assigned and not killed in block b

- KILL(b): the definitions of variables overwritten in block b

IN(b) = ⋃p∈pred(b)OUT(p)

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))



Problems 1(a) and 1(b)



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3

L4

L5

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3 L0

L4

L5

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1 L0

L2 L2 L0, L1

L3 L3 L0 L0, L1, L2

L4 L1, L2, L3

L5 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0

L1 L1 L0 L0, L1

L2 L2 L0, L1 L0, L1, L2

L3 L3 L0 L0, L1, L2 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c

Convergence!



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c

Is it possible to replace the use of a in block L1 with the 
constant 0?



Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L0:  a = 0
L1:  b = a + 1
L2:  c = c + b
L3:  a = b * 2
L4:  if a < N goto L1
L5:  return c

Is it possible to replace the use of a in block L1 with the 
constant 0?

No. To determine this, we would look at the IN set for block L1 -- the fact that the IN set 
contains two definitions of ‘a’ (L0 and L3) means we cannot perform this constant 
propagation. In other words, more than one definition of ‘a’ is a reaching definition to 
block L1, and therefore performing constant propagation would only preserve one 
possible value of ‘a’ and the generated code would not be equivalent.



Phi-Functions
● A way to represent multiple possible values for a certain definition

○ Not a “real” instruction – just a form of bookkeeping needed for SSA

Original. SSA Form



Where to place Phi-Functions?
● Wherever a variable has multiple possible definitions entering a block

○ Inefficient (and unnecessary!) to consider all possible phi-functions at the start of each block

Original SSA Form



Example With a Loop

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original
a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

return c1

SSA
Notes:
•Loop-back edges are
also merge points, so
require Φ-functions
•a0, b0, c0 are initial
values of a, b, c on
entry to initial block
•b1 is dead – can
delete later
•c is live on entry – 
either input parameter
or uninitialized



Problem 2(a)
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6

1

2

3

4

5

6

A node X dominates a node Y iff every path from the entry point of 
the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y 

Need to go through 0 to get through 1, 2, 3, 4, 5, 6 and 0 cannot 
strictly dominate itself
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1
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6

A node Y is in the dominance frontier of node X iff X dominates an 
immediate predecessor of Y but X does not strictly dominate Y .
A node 0 is in the dominance frontier of node 0 iff 0 dominates an 
immediate predecessor (6) of 0 but 0 does not strictly dominate 0

0 dominates 6, 6 is an immediate predecessor of 0, 0 does not 
strictly dominate 0 
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅

2
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4

5

6

A node X dominates a node Y iff every path from the entry point of 
the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y 

1 does not dominate 6 because there is a path from 5 that doesn’t 
include 1. 1 does not strictly dominate itself
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6
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6

A node Y is in the dominance frontier of node X iff X dominates an 
immediate predecessor of Y but X does not strictly dominate Y .

X = 1, Y = 6, 1 dominates 1, 1 is an immediate predecessor of 6, 1 
does not strictly dominate 6
X = 1, Y = 1, 1 dominates 1, 1 is an immediate predecessor of 1, 1 
does not strictly dominate 1
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5

3

4

5

6

A node X dominates a node Y iff every path from the entry point 
of the control flow graph to Y includes X .
A node X strictly dominates a node Y iff X dominates Y and X ≠ Y 

Need to go through 2 to get through 3, 4, 5 and 2 cannot strictly 
dominate itself
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3

4

5

6

A node Y is in the dominance frontier of node X iff X dominates an 
immediate predecessor of Y but X does not strictly dominate Y .

X = 2, Y = 6, 2 dominates 5, 5 is an immediate predecessor of 6, 2 
does not strictly dominate 6
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4

5

6

3 does not strictly dominate 5 (path through 4) and therefore does 
not strictly dominate anything else

3 dominates 3, 3 is an immediate predecessor of 5, 3 does not 
strictly dominate 5
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Same as previous slide but with 4 instead of 3

NODE STRICTLY DOMINATES DOMINANCE FRONTIER
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NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6

5 does not strictly dominate 6 (path through 1) and therefore does 
not strictly dominate anything else

5 dominates 5, 5 is an immediate predecessor of 6, 5 does not 
strictly dominate 6
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6 does not strictly dominate 0 (path through 0) and therefore does 
not strictly dominate anything else

6 dominates 6, 6 is an immediate predecessor of 0, 6 does not 
strictly dominate 0

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5, 6 0 

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0



Problem 2(b)



Converting to SSA

Compute the dominance 
frontier of each node

1

2

3

Determine which variables 
need merging in each node

Assign numbers to definitions 
and add phi functions

Already done (in problem 2a)



NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0
1, 2, 3,
4, 5, 6

0

1 ∅ 1, 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 1: Dominance Frontiers
a = c + 2
d = a + b

c = b - d b = a + c

d = b * 2
e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6



Converting to SSA

Compute the dominance 
frontier of each node

1

2

3

Determine which variables 
need merging in each node

Assign numbers to definitions 
and add phi functions

We will compute using the 
dominance frontiers



Need to merge:
c,b

NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2
d = a + b

c = b - d b = a + c

d = b * 2
e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 1: Each node in the dominance frontier of 
node X will merge any definitions created in node X.

Need to merge:
a,d

Need to merge:
c

Need to merge:
d,e

a,d

c

b

d,e

d

c

d

a,d

c c b

d,e d

c

d



NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2
d = a + b

c = b - d b = a + c

d = b * 2
e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 2: Each merge will create a new 
definition, which may need merging again.

Need to merge:
a,d,b,c

Need to merge:
c,b,d,e

Need to merge:
c

Need to merge:
d,e

d,e

b,c



NODE DOMINANCE FRONTIER

0 0

1 1, 6

2 6

3 5

4 5

5 6

6 0

Step 2: Determine Necessary Merges
a = c + 2
d = a + b

c = b - d b = a + c

d = b * 2
e = 2 * 2

d = b + 1

c = d >> 4

d = c + b

B0

B1 B2

B3
B4

B5

B6

ITERATION 3: Each merge will create a new 
definition, which may need merging again.

Need to merge:
a,d,b,c,e

Need to merge:
c,b,d,e

Need to merge:
c

Need to merge:
d,e

d,e



Converting to SSA

Compute the dominance 
frontier of each node

1

2

3

Determine which variables 
need merging in each node

Assign numbers to definitions 
and add phi functions

Place phi functions first,
then increment subscripts



a = c + 2
d = a + b

B0

Need to merge:
a,b,c,d,e

a1 = Φ(a0, a2)
b1 = Φ(b0, b3)
c1 = Φ(c0, c5)
d1 = Φ(d0, d7)
e1 = Φ(e0, e4)
a2 = c1 + 2
d2 = a2 + b1

B0

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.

Note: these subscripts determined 
after doing the rest of the CFG!



c2 = Φ(c1, c3)
c3 = b1 - d2

B1 c = b - d B1

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.

Need to merge:
c

Note: must merge its own (later) 
definition because of the back-edge!



b2 = a2 + c1B2

Nothing to merge

b = a + c B2

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.



d3 = b2 * 2
e2 = 2 * 2B3

Nothing to merge

d = b * 2
e = 2 * 2 B3

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.



B4

Nothing to merge

d = b + 1 B4 d4 = b2 + 1

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.



B5 c = d >> 4 B5

d5 = Φ(d3, d4)
e3 = Φ(e1, e2)
c4 = d5 >> 4

Need to merge:
d,e

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.



B6 d = c + b B6

b3 = Φ(b1, b2)
c5 = Φ(c3, c4)
d6 = Φ(d2, d5)
e4 = Φ(e1, e3)
d7 = c5 + b3

Need to merge:
b,c,d,e

Step 3: Assign Definition Numbers
Merges go first, and each successive definition of a 
variable should increment its index by 1.



a1 = Φ(a0, a2)
b1 = Φ(b0, b3)
c1 = Φ(c0, c5)
d1 = Φ(d0, d7)
e1 = Φ(e0, e4)
a2 = c1 + 2
d2 = a2 + b1

c2 = Φ(c1, c3)
c3 = b1 - d2

b2 = a2 + c1

d3 = b2 * 2
e2 = 2 * 2

d4 = b2 + 1

d5 = Φ(d3, d4)
e3 = Φ(e1, e2)
c4 = d5 >> 4

b3 = Φ(b1, b2)
c5 = Φ(c3, c4)
d6 = Φ(d2, d5)
e4 = Φ(e1, e3)
d7 = c5 + b3

B0

B1
B2

B3
B4

B5

B6

Solution


