CSE 401/M501 — Compilers

Survey of Code Optimizations

Hal Perkins
Fall 2023
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Administrivia

* Semantics/type checking due Thursday night

— Be sure to review MiniJava project description and
semantics project assignment when you think
you’re “done”

e CSE M 501 “project extras” requirements — if
your group hasn’t done so yet, please figure
out what you plan to do and discuss with

instructor soon (send email to cse401-staff
outlining what you have in mind to start)
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Agenda

e Survey some code “optimizations”
(improvements)

— Get a feel for what’s possible
* Some organizing concepts
— Basic blocks
— Control-flow and dataflow graph

— Analysis vs. transformation
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Optimizations

* Use added passes to identify inefficiencies in
intermediate or target code
* Replace with equivalent but better sequences

— Equivalent = “has same externally visible behavior”

— Better can mean many things: faster, smaller, use less
POWEr, ...

e “Optimize” overly optimistic: “usually improve” is
generally more accurate
— And “clever” programmers can outwit you!

UW CSE 401/M501 Fall 2023 N-4



Optimizer note: typically, assignment of actual registers
happens later; we assume as many “pseudo registers” tn as

An exa m p I e we need here; using a new tn every time simplifies tracking.

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = t1 * 4;

t3 = fp + t2;

td = *(t3 + aoffset); // a[il]

t = 2;

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8;
*(fp + xoffset) = t9;, // x = ..

tl0 = *(fp + xoffset); // x
tll = 5;

tl2 = t10 - tl11;

tl3 = *(fp + ioffset); // i

tl4 = t13 * 4;
tl5 = fp + tl14;
* (tl5 + coffset) = tl12; // c[i] := ..
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An example

X = a[1] + b[2],‘
c[i] = x - 5;

Strength reduction: shift
often cheaper than multiply

/] i

// al[i]

// bl[2]

// x = ..

// x

// i
t13 * 4

tl = *(fp + ioffset);

t2 = tl < 2; // was tl * 4
t3 = fp + t2;

t4 = *(t3 + aoffset);

ts = 2;

t6 = t5 << 2; // was t5 * 4
t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;

*(fp + xoffset) = t9;

tl0 = *(fp + xoffset);

tll = 5;

tl2 = t10 - tl1l1;

tl3 = *(fp + ioffset);

tld = tl13 << 2; // was

tl5 = fp + tl14;

*(tl5 + coffset) = tl12;
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An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 < 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
ts = 2;
t6 = 2 << 2; // was t5 << 2
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
Constant propagation: t9 = t4 + t8;
replace variables with *(fp + xoffset) = t9; // x = ..
known constant values t10 = *(fp + xoffset); // x
tll = 5;
tl2 = t10 - 5; // was t10 - tl1
tl3 = *(fp + ioffset); // i

t1l4 = t13 << 2;
tl5 = fp + tl14;

* (tl5 + coffset) = tl12; // c[i] := ..
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An example

X = a[1] + b[2],’
c[i] = x - 5;

Dead store (or dead
assignment) elimination:
remove assignments to
provably unused variables

tl = *(fp + ioffset);
t2 = tl1 K< 2;

t3 = fp + t2;

t4 = *(t3 + aoffset);
5 =2+

t6 = 2 << 2;

t7 = fp + t6;

t8 = *(t7 + boffset);
t9 = t4 + t8;

*(fp + xoffset) = t9;
tl0 = *(fp + xoffset);
£t11 =5

tl2 = t10 - §5;

tl3 = *(fp + ioffset);
tld = tl13 << 2;

tl5 = fp + tl14;

*(tl5 + coffset) = tl12;
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// i

// al[i]

// bl[2]

// x = ..

// x

// i

// cli]
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An example

X = a[1] + b[2],’
c[i] = x - 5;

Constant folding: statically
compute operations
with known constant values

tl = *(fp + ioffset);
t2 = tl1 K< 2;

t3 = fp + t2;

t4 = *(t3 + aoffset);
t6 = 8; // was 2 << 2
t7 = fp + t6;

t8 = *(t7 + boffset);
t9 = t4 + t8;

*(fp + xoffset) = t9;
t1l0 = *(fp + xoffset);
tl2 = t10 - 5;

tl3 = *(fp + ioffset);
t1l4 = t13 << 2;

tl5 = fp + tl14;

*(tl5 + coffset) = tl12;
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// i
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An example

C[l] = x - 5; t2 = tl1 < 2,'
t3 = fp + t2;

t4d = *(t3 + aoffset); // al[il]
£6—=8+

t7 = fp + 8; // was fp + té6
t8 = *(t7 + boffset); // b[2]

Constant propagation then t9 = t4 + t8;
dead store elimination * (fp + xoffset) = t9; // x = ..

tl0 = *(fp + xoffset); // x

tl2 = t£10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = tl13 < 2;

tl5 = fp + tl14;

* (t1l5 + coffset) = tl12; // c[i] := ..
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An example

C[l] = x - 5; t2 = tl1 < 2,'
t3 = fp + t2;

td = *(t3 + aoffset); // a[il]

t7 boffset + 8; // was fp + 8

t8 = *(t7 + fp); // b[2] (was t7 + boffset)
t9 = t4 + t8;

Arithmetic identities: + is * (fp + xoffset) = t9; // x = ..
commutative & associative. t10 = *(fp + xoffset); // x
boffset is typically a known, £12 = 10 - 5:

compile-time constant (say t13 = *(fp + ioffset); // i
-32), so this enables... £14 = £13 << 2

tl5 = fp + tl14;
* (t1l5 + coffset) = tl12; // c[i] := ..
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An example

C[l] = x - 5; t2 = tl1 < 2,'
t3 = fp + t2;

td = *(t3 + aoffset); // a[il]

t7 = -24; // was boffset (-32) + 8
t8 = *(t7 + fp); // b[2]
t9 = t4 + t8;

... more constant folding, *(fp + xoffset) = t9; // x = ..

which in turn enables ... t10 = *(fp + xoffset); // x

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = tl13 << 2;

tl5 = fp + tl14;

* (t1l5 + coffset) = tl12; // c[i] := ..
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An example

C[l] = x - 5; t2 = tl1 < 2,'
t3 = fp + t2;

td = *(t3 + aoffset); // a[il]
¥l=-245

t8 = *(fp - 24); // b[2] (was t7+fp)
t9 = t4 + t8;

More constant propagation *(fp + xoffset) = t9; // x = ..
and dead store elimination t10 = *(fp + xoffset); // x

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i

tl4 = tl13 << 2;

tl5 = fp + tl14;

* (t1l5 + coffset) = tl12; // c[i] := ..
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An example

C[l] = x - 5; t2 = tl1 < 2,'
t3 = fp + t2;

t4d = *(t3 + aoffset); // al[il]
t8 *(fp - 24); // bl[2]
t9 = t4 + t8;

*(fp + xoffset) = t9;, // x = ..

Common subexpression tl0 = *(fp + xoffset); // x

elimination — no need to t12 = t10 - 5;

compute *(fp+ioffset) again [ ~st13 = t1. // i (was *(fp + ioffset))
if we know it won't change £14 = £13 << 2:

tl5 = fp + tl14;
* (t1l5 + coffset) = tl12; // c[i] := ..
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An example

C[l] = x - 5; t2 = tl1 < 2,'
t3 = fp + t2;

t4d = *(t3 + aoffset); // al[il]
t8 *(fp - 24); // bl[2]
t9 = t4 + t8;

*(fp + xoffset) = t9;, // x = ..

Copy propagation: replace t10 = t9; // x (was *(fp + xoffset))
assignment targets with t12 = t10 - 5;

their values (e.g., replace t13 = t1: // i

t13 with t1) tld = tl << 2; // was tl13 << 2

tl5 = fp + tl14;
* (t1l5 + coffset) = tl12; // c[i] := ..
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An example

X = a[1] + b[2],‘
c[i] = x - 5;

Common subexpression
elimination

tl
t2

t3 =
td =

t8
t9

*(fp

t1l0
tl2
t13

tl4 =

t15

*(tl15

*(fp + ioffset);
tl << 2;

fp + t2;
*(t3 + aoffset);
*(fp - 24);
t4 + t8;
+ xoffset) = t9;
= t9;
tl0 - 5;
tl;
t2; // was
fp + t14;

+ coffset) = tl1l2;
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// i

// al[i]

// bl2]

//
//

// i
tl << 2

// cli]
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An example

c[i] = x - 5;

X = a[1] + b[2],‘

More copy propagation

‘\\\\\\\s

tl =
t2
t3 =
td =
t8
t9 =
*(fp
t10
t12

t1l3 =

tl4
t15
*(tl

5
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*(fp + ioffset); // i
tl << 2;
fp + t2;
*(t3 + aoffset); // a[i]
*(fp - 24); // bl[2]
t4 + t8;
+ xoffset) = t9; // x = ..
= t9; // x
t9 - 5; // was t10 - 5
tl; // i
= t2;
fp + t14;
+ coffset) = tl2; // c[i]
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An example

X = a[1] + b[2],‘
c[i] = x - 5;

More copy propagation

tl =
t2
t3 =
td =
t8
t9 =
*(fp
t10
t12
t13
tl4 =
tl5 =
* (15

*(fp + ioffset);
tl << 2;

fp + t2;
*(t3 + aoffset);
*(fp - 24);
t4 + t8;
+ xoffset) = t9;
t9;
t9 - 5;
tl;
t2;
fp + t2;

+ coffset) = tl1l2;
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// al[i]
// bl[2]

// x = ..

// x

// i

// was fp + tl4

// cli]
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An example

X = a[1] + b[2],‘
c[i] = x - 5;

More common

subexpression elimination

and copy propagation

tl = *(fp + ioffset);

t2 tl << 2;
t3 = fp + t2;

t4 = *(t3 + aoffset);

t8 = *(fp - 24);
t9 = t4 + t8;

*(fp + xoffset) =

t10 = t9;
tl2 = t9 - 5;
tl3 = t1;
tl1l4 = t2;
tl5 = t3

*(t3 + coffset) =

UW CSE 401/M501 Fall 2023

t9;

tl1l2;

//
//

//
//

//

//
//

was fp + t2
was *(tl5 + ...)
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An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // bl2]
t9 = t4 + t8;
*(fp + xoffset) = t9;, // x = ..
Dead assignment —>+t10 = +9; VAR 3
elimination t12 = t9 - 5;
<<\\\\\\\\\\5§t13 = +1; 1/ i
14 = £2;
L5 = =2
*(t3 + coffset) = tl12; // c[i] := ..
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An example

X

= a[i] + b[2];
c[i] =

x - 5;

Final: 3 loads (i, a[i], b[2]), 2 stores (X, c[i]), 4 register-only moves, 8 +/-, 1 shift

tl
t2

t3 =
td =

t8
t9

*(fp

tl2

*(t3 + coffset) = tl1l2;

*(fp + ioffset);

tl << 2;

fp + t2;

*(t3 + aoffset);
*(fp - 24);

t4 + t8;

+ xoffset) = t9;
t9 - 5;

// i

// al[i]
// bl[2]

// cl[i]

Original: 5 loads, 2 stores, 10 register-only moves, 12 +/-, 3 *

Optimizer note: we usually leave assignment of actual registers to later stage of
the compiler and assume as many “pseudo registers” as we need here

UW CSE 401/M501 Fall 2023
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Kinds of optimizations

* peephole: look at adjacent instructions

* |ocal: look at individual basic blocks
— straight-line sequence of statements

* intraprocedural: look at whole procedure
— Commonly called “global”

* interprocedural: look across procedures

— “whole program” analysis
— gcc’s “link time optimization” is a version of this

e Larger scope => usually more effective optimization
when it can be done, but more cost and complexity

— Analysis is often less precise because of more possibilities
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Peephole Optimization

* After target code generation, look at adjacent
instructions (a “peephole” on the code

stream)

— try to replace adjacent instructions with

something faster

movqg %r9,16 (%rsp)
movqg 16 (%rsp) ,%rl2

movqg %r9,16 (%$rsp)
movqg %r9,%rl2

— Jump chaining can also be considered a form of
peephole optimization (removing jump to jump)

UW CSE 401/M501 Fall 2023
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More Examples

subqg $8,%rax movqg %r2,-8(%$rax)
movq %r2,0 (%rax)

# %$rax modified
# before next read

movqg 16 (%rsp),%rax |incq 16 (%rsp)
addg $1,%rax

movqg %rax,l1l6 (%rsp)
# %$rax modified
# before next read

* One way to do complex instruction selection
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Algebraic Simplification

e “constant folding
4;
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strength reduction”

v

= X

—

X
x<<1 orz=x+x

x << 3

x >> 3 (only if know x>=0)

z = x (maybe; not doubles,
might change int overflow)

* Can be done at many levels from peephole on up

* Why do these examples happen?

— Often created during conversion to lower-level IR, by other optimizations, code gen, etc.
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Local Optimizations

* Analysis and optimizations within a basic block

* Basic block: straight-line sequence of
statements

— no control flow into or out of middle of sequence
* Better than peephole
* Not too hard to implement with reasonable IR

* Machine-independent, if done on IR
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Local Constant Propagation

reassigned)

If variable assigned a constant, replace downstream
uses of the variable with the constant (until variable

Can enable more constant folding
— Code; unoptimized intermediate code:

R

count = 10;

// count not changed
count * 5;
x ~ 3;

7;

count = 10;

tl = count;

t2 = 5;

t3 = tl * t2;

x = t3;

t4 = x;

ts = 3;

t6 = exp(t4,t5);
Y t6;

X

v

UW CSE 401/M501 Fall 2023
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Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; constant propagation:

count = 10; count = 10;
.. // count not changed tl = 10; // cp count
x = count * 5; t2 = 5;
y =x * 3; t3 =10 * t2; // cp tl
x =17; x = t3;
t4 = x;
t5 = 3;
t6 = exp(t4,3); // cp t5
y = t6;
x =7
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Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

Can enable more constant folding
— Code; constant folding:

R

count =

10;
// count not changed
count * 5;
x ~ 3;
7;

count = 10;

tl = 10;

t2 5;

t3 50; // 10*t2
x = t3;

t4 = x;

ts = 3;

t6 = exp(t4,3);

Y t6;

7;

UW CSE 401/M501 Fall 2023
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Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; repropagated intermediate code

count = 10; count = 10;
.. // count not changed tl = 10;
X = count * 5; t2 = 5;
y = x * 3; t3 = 50;
x =17; x = 50; // cp t3
t4d = 50; // cp x
t5 = 3;
t6 = exp(50,3); // cp t4
y = t6;
x =17,
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Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; refold intermediate code

count = 10; count = 10;
.. // count not changed tl = 10;
X = count * 5; t2 = 5;
y = x * 3; t3 = 50;
x =17; x = 50;
t4 = 50;
t5 = 3;
t6 = 125000; // cf 5073
y = t6;
x =17,
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Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; repropagated intermediate code

count = 10; count = 10;
.. // count not changed tl = 10;
X = count * 5; t2 = 5;
y = x * 3; t3 = 50;
x =17; x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000; // cp t6
x =17,
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Local Dead Assignment Elimination

* If l.h.s. of assighment never referenced again before being
overwritten, then can delete assignment

— Why would this happen?
Clean-up after previous optimizations, often

count = 10; count = 10;
.. // count not changed tl = 10;
x = count * 5; t2 = 5;
y = x * 3; t3 = 50;
x =17; x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000;
x =17,
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Local Dead Assignment Elimination

* If l.h.s. of assighment never referenced again before being
overwritten, then can delete assignment

— Why would this happen?
Clean-up after previous optimizations, often

count = 10; count = 10;
.. // count not changed £1 =10,
X = count * 5; 2 =5+
=x ~ 3; ES—=E0—+
7 %= 50+ «— Can't delete if x=50 potentially
t4 = 50 visible, e.qg., after exceptign

R
I

x =17,
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Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
a[i] + b[i] ... t2 = tl1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

tS = *(fp + ioffset);

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;
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Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] ... t2 = tl1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = t1; // CSE

t6 = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;
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Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] ... t2 = tl1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);

t5 = t1;

t6 = t1 *x 4; // CP

t7 = fp + t6;

t8 = *(t7 + boffset);

t9 = t4 + t8;
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Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
t9

*(fp + ioffset);
tl * 4;

fp + t2;

*(t3 + aoffset);
tl;

t2; // CSE
fp + t2; // CP
*(t7 + boffset);
t4 + t8;

UW CSE 401/M501 Fall 2023
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Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
t9

*(fp
tl *
fp +
*(£3
tl;
t2;
t3;
* (€3
t4 +

+ ioffset);
4;

t2;

+ aoffset);

// CSE
+ boffset); /e
t8;
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Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. a[i] + b[i] t2 = tl1 * 4;

t3 = fp + t2;

t4 = *(t3 + aoffset);
£5—=+1+ // DAE
£6—=—+t2+ // DAE
£7=+3; // DAE

t8 = *(t3 + boffset);
t9 = t4 + t8;
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Intraprocedural optimizations

* Enlarge scope of analysis to whole procedure
— more opportunities for optimization
— have to deal with branches, merges, and loops

* Can do constant propagation, common
subexpression elimination, etc. at “global”
level

* Can do new things, e.g. loop optimizations

* Optimizing compilers often work at this level
(-02)
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Code Motion

* Goal: move loop-invariant calculations out of loops
e Can do at source level or at intermediate code level

for (1 = 0; 1 < 10; i = i+l) {
af[i] = a[i] + b[]];

z =2z + 10000;

0
0; 1 < 10; 1 = i+1) {
ali
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Code Motion at IL

for (i = 0; i < 10; i = i+1) {
a[i] = b[3]];

}

*(fp + ioffset) = 0;

label top;
t0 = *(fp + ioffset);
iffalse (t0 < 10) goto done;

tl = *(fp + joffset);
t2 = tl * 4;

t3 = fp + t2;

t4 = *(t3 + boffset);
t5 *(fp + ioffset);

t6 = t5 * 4;
= fp + t6;
*(t7 + aoffset) = t4;
t9 = *(fp + ioffset);
tl0 = t9 + 1;
*(fp + ioffset) = t10;
goto top;

label done;
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Code Motion

at IL

0; 1 < 10; 1 =
b[j]’

for (1
af[i]

}

*(fp + ioffset) = 0;
label top;

t0 = *(fp + ioffset);

iffalse (t0 < 10) go

tl = *(fp + joffset)/
t2 = t1 * 4;
t3 = fp + boffset;
t4d = *(t3 + t2);
tS = *(fp + ioffset)/
t6 = t5 * 4;
t7 = fp + aoffset;
*(t7 + t6) = t4;
t9 = *(fp + ioffset);
tl0 = €9 + 1;
*(fp + ioffset) ' = t10;
goto top;

label done;

- tll = fp + ioffset;
i+1){ ,/€t12 = fp + joffset;
//’t13 = fp + boffset;
/l/l,.t14 = fp + aoffset;
*(fp + ioffset) = 0;
label top;
t0 = *tl11;
e iffalse (t0 < 10) goto
tl = *tl2;
t2 = t1 * 4; {
—t3—=—t13; :
t4d = *(tl3 + t2); h
£5 = *tl1;
t6 = t5 * 4;
£ 7—=—+14
*(tld + t6) = t4;
t9 = *tl1l;
t1l0 = €9 + 1;
*tll = t10;
goto top;
label done;
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Loop Induction Variable Elimination

« Common special case of loop-based strength reduction

* For-loop index is induction variable

— incremented each time around loop

— offsets & pointers calculated from it
e |f used only to index arrays, rewrite with pointers
compute initial offsets/pointers before loop
increment offsets/pointers each time around loop

no expensive
scaling in loop

then do loop-
invariant code
motion

for (1 = 0; i < 10; i = i+1){
al[i] = a[i] + x;
}
for (p = &a[0]; p < &a[1l0]; p = p+4){

*Pp = *p + x;
}
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Interprocedural Optimization

* Expand scope of analysis to procedures calling
each other

 Can do local & intraprocedural optimizations
at larger scope

* Can do new optimizations, e.g. inlining
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Inlining: replace call with body

* Replace procedure call with body of callee —

* Source:

final double pi = 3.1415927;
double circle area(double radius) ({
return pi * (radius * radius);

}
double r = 5.0;

double a = circle area(r);

Especially important
for object getter/setter
methods, to avoid
overhead for these
frequent but trivial
procedure calls

* Afterinlining: Actually, closer to this:

A 4

double t = r

double r = 5.0; double a = pi * t * t

And worry about scopes, etc.

double a = pi * r * r; ———

e (Then what? Constant propagation/folding)
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Data Structures for Optimizations

* Need to represent control and data flow

e Control flow graph (CFG) captures flow of control
— nodes are IL statements, or whole basic blocks
— edges represent (all possible) control flow
— node with multiple successors = branch/switch
— node with multiple predecessors = merge
— cycle in graph = loop
* Data flow graph (DFG) captures flow of data, e.g. def/use
chains:
— nodes are def(inition)s and uses
— edge from def to use
— a def can reach multiple uses

— a use can have multiple reaching defs (different control flow
paths, possible aliasing, etc.)

e SSA: another widely used way of linking defs and uses
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Analysis and Transformation

* Each optimization is made up of
— some number of analyses
— followed by a transformation

* Analyze CFG and/or DFG by propagating info forward
or backward along CFG and/or DFG edges

— merges in graph require combining info
— loops in graph require iterative approximation

e Perform (improving) transformations based on info
computed

* Analysis must be conservative/safe/sound so that
transformations preserve program behavior
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Example: Constant Propagation, Folding

 Can use either the CFG or the DFG
 CFG analysis info: table mapping each variable in scope to one of:

— a particular constant
— NonConstant
— Undefined

* Transformation at each instruction:

— If an assignment of a constant to a variable, set variable as a constant
with known value

— If reference to a variable that the table maps to a constant, then
replace with that constant (constant propagation)

— if r.h.s. expression involves only constants, and has no side-effects,
then perform operation at compile-time and replace r.h.s. with
constant result (constant folding)

For best analysis, do constant folding as part of analysis, to learn all
constants in one pass
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Merging data flow analysis info

e Constraint: merge results must be sound

— if something is believed true after the merge, then it must
be true no matter which path we took into the merge

— only things true along all predecessors are true after the
merge

* To merge two maps of constant information, build map
by merging corresponding variable information
* To merge information about two variables:
— if one is Undefined, keep the other
— if both are the same constant, keep that constant
— otherwise, degenerate to NonConstant (NC)
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Example Merges

int x int x
5 / \

N
N\

X ==7?
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Example Merges

int x int x
X := b % = 5§ x = f(..)
X ==7? X ==7?
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How to analyze loops

i=0; e Safe but imprecise:
x = 10; forget everything when

y = 20; .
while (...) { we enter or exit a loop
// what’'s true here? * Precise but unsafe: keep
everything when we
Por A enter or exit a loop
= 30;

} e Can we do better?

// what’s true here?

X ... 1 ..y ...
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Loop Terminology
N/

preheader

entry edge

head

back
edge

exit edge
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Optimistic lterative Analysis

* |nitially assume information at loop head is same as
information at loop entry

 Then analyze loop body, computing information at
back edge

 Merge information at loop back edge and loop entry
e Test if merged information is same as original
assumption
— If so, then we’re done

— If not, then replace previous assumption with merged
information,

— and go back to analysis of loop body
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Example

i=20;

x = 10;

y = 20;

while (...) {
// what’s true here? i=0,x=10,y =20
i=1i4+1;
y = 30; }

// what’s true here-? i=1,x=10,y =30

X ... 1 ...Y
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Example

i=20;

x = 10;

y = 20;

while (...) {
// what’s true here? i =NC, x =10,y = NC
i=1i4+1;
y = 30; } !

// what’s true here? i = NC, x = 10, y = NC

X ... 1 ...Y
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Why does this work?

* Why are the results always conservative?

* Because if the algorithm stops, then

— the loop head info is at least as conservative as both
the loop entry info and the loop back edge info

— the analysis within the loop body is conservative,
given the assumption that the loop head info is
conservative

e Will it terminate?

— Yes, if there are only a finite number of times we can
merge information before reaching worst-case info
(e.g., NonConstant / NC in this example)
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(1,1,1)

Termination — more generally

Suppose alg has a “state” vector x = (xy,X5,...,X,), each x;  ©%0 I
from a finite, ordered set, say {0,1} or {1,2,3}

If each state transition (iteration of an alg, such as prev few

slides) allowed, say, x; to go up while x; goes down, then oo
iteration is possible: (0,1) - (1,0) - (0,1) - ...

BUT, if alg ensures that, at each iteration, old-x; < new-x;, then
termination is certain: You can only increase x; a finite number
of times before you hit the top value

E.g., if x, € {0,1}, x = (X{,X,,...,X,,) are corners of an n-cube; at
worst, alg walks from (0,0,...,0) to (1,1,...,1) in £ n steps

Math Jargon: such a structure is typically called a “lattice”.
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More analyses

e Alias analysis

— Detect when different references may or must refer to the same
memory locations

* Escape analysis
— Pointers that are live on exit from procedures
— Pointed-to data may “escape” to other procedures or threads

 Dependence analysis
— Determining which references depend on which other
references

— One application: analyze array subscripts that depend on loop
induction variables to determine which loop iterations depend
on each other

» Key analysis for loop parallelization/vectorization
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Summary

* Optimizations organized as collections of passes, each
rewriting IL in place into (hopefully) better version

e Each pass does analysis to determine what is possible,
followed by transformation(s) that (hopefully) improve
the program

— Sometimes “analysis-only” passes are helpful

— Often redo analysis/transformations again to take
advantage of possibilities revealed by previous changes

* Presence of optimizations makes other parts of
compiler (e.g. intermediate and target code
generation) easier to write since they can defer to
optimization pass to improve/clean up simple-and-
easy-to-generate-correct-but-not-clever code
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