
CSE 401/M501 – Compilers

Survey of Code Optimizations
Hal Perkins
Fall 2023

UW CSE 401/M501 Fall 2023 N-1

Administrivia

• Semantics/type checking due Thursday night
– Be sure to review MiniJava project description and

semantics project assignment when you think
you’re “done”

• CSE M 501 “project extras” requirements – if
your group hasn’t done so yet, please figure
out what you plan to do and discuss with
instructor soon (send email to cse401-staff
outlining what you have in mind to start)

UW CSE 401/M501 Fall 2023 N-2

Agenda

• Survey some code “optimizations”
(improvements)
– Get a feel for what’s possible

• Some organizing concepts
– Basic blocks
– Control-flow and dataflow graph
– Analysis vs. transformation

UW CSE 401/M501 Fall 2023 N-3

Optimizations

• Use added passes to identify inefficiencies in
intermediate or target code

• Replace with equivalent but better sequences
– Equivalent = “has same externally visible behavior”
– Better can mean many things: faster, smaller, use less

power, …

• “Optimize” overly optimistic: “usually improve” is
generally more accurate
– And “clever” programmers can outwit you!

UW CSE 401/M501 Fall 2023 N-4

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t5 = 2;
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t11 = 5;
t12 = t10 - t11;
t13 = *(fp + ioffset); // i
t14 = t13 * 4;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-5

Optimizer note: typically, assignment of actual registers
happens later; we assume as many “pseudo registers” tn as
we need here; using a new tn every time simplifies tracking.

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2; // was t1 * 4
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t5 = 2;
t6 = t5 << 2; // was t5 * 4
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t11 = 5;
t12 = t10 - t11;
t13 = *(fp + ioffset); // i
t14 = t13 << 2; // was t13 * 4
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-6

Strength reduction: shift
often cheaper than multiply

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t5 = 2;
t6 = 2 << 2; // was t5 << 2
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t11 = 5;
t12 = t10 - 5; // was t10 – t11
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-7

Constant propagation:
replace variables with
known constant values

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t5 = 2;
t6 = 2 << 2;
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t11 = 5;
t12 = t10 – 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-8

Dead store (or dead
assignment) elimination:
remove assignments to
provably unused variables

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t6 = 8; // was 2 << 2
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t12 = t10 – 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-9

Constant folding: statically
compute operations
with known constant values

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t6 = 8;
t7 = fp + 8; // was fp + t6
t8 = *(t7 + boffset); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t12 = t10 – 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-10

Constant propagation then
dead store elimination

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t7 = boffset + 8; // was fp + 8
t8 = *(t7 + fp); // b[2] (was t7 + boffset)
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t12 = t10 – 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-11

Arithmetic identities: + is
commutative & associative.
boffset is typically a known,
compile-time constant (say
-32), so this enables…

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t7 = -24; // was boffset (-32) + 8
t8 = *(t7 + fp); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t12 = t10 – 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-12

… more constant folding,
which in turn enables …

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t7 = -24;
t8 = *(fp - 24); // b[2] (was t7+fp)
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t12 = t10 – 5;
t13 = *(fp + ioffset); // i
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-13

More constant propagation
and dead store elimination

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = *(fp + xoffset); // x
t12 = t10 – 5;
t13 = t1; // i (was *(fp + ioffset))
t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-14

Common subexpression
elimination – no need to
compute *(fp+ioffset) again
if we know it won’t change

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = t9; // x (was *(fp + xoffset))
t12 = t10 – 5;
t13 = t1; // i
t14 = t1 << 2; // was t13 << 2
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-15

Copy propagation: replace
assignment targets with
their values (e.g., replace
t13 with t1)

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = t9; // x
t12 = t10 – 5;
t13 = t1; // i
t14 = t2; // was t1 << 2
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-16

Common subexpression
elimination

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = t9; // x
t12 = t9 – 5; // was t10 - 5
t13 = t1; // i
t14 = t2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-17

More copy propagation

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = t9; // x
t12 = t9 – 5;
t13 = t1; // i
t14 = t2;
t15 = fp + t2; // was fp + t14
*(t15 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-18

More copy propagation

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = t9; // x
t12 = t9 – 5;
t13 = t1; // i
t14 = t2;
t15 = t3 // was fp + t2
*(t3 + coffset) = t12; // was *(t15 + ...)

UW CSE 401/M501 Fall 2023 N-19

More common
subexpression elimination
and copy propagation

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t10 = t9; // x
t12 = t9 – 5;
t13 = t1; // i
t14 = t2;
t15 = t3;
*(t3 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-20

Dead assignment
elimination

An example
x = a[i] + b[2];
c[i] = x - 5;

t1 = *(fp + ioffset); // i
t2 = t1 << 2;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // b[2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = …
t12 = t9 – 5;
*(t3 + coffset) = t12; // c[i] := …

UW CSE 401/M501 Fall 2023 N-21

• Final: 3 loads (i, a[i], b[2]), 2 stores (x, c[i]), 4 register-only moves, 8 +/-, 1 shift
• Original: 5 loads, 2 stores, 10 register-only moves, 12 +/-, 3 *

• Optimizer note: we usually leave assignment of actual registers to later stage of
the compiler and assume as many “pseudo registers” as we need here

Kinds of optimizations
• peephole: look at adjacent instructions
• local: look at individual basic blocks
– straight-line sequence of statements

• intraprocedural: look at whole procedure
– Commonly called “global”

• interprocedural: look across procedures
– “whole program” analysis
– gcc’s “link time optimization” is a version of this

• Larger scope => usually more effective optimization
when it can be done, but more cost and complexity
– Analysis is often less precise because of more possibilities

UW CSE 401/M501 Fall 2023 N-22

Peephole Optimization

• After target code generation, look at adjacent
instructions (a “peephole” on the code
stream)
– try to replace adjacent instructions with

something faster

– Jump chaining can also be considered a form of
peephole optimization (removing jump to jump)

UW CSE 401/M501 Fall 2023 N-23

movq %r9,16(%rsp)
movq 16(%rsp),%r12

movq %r9,16(%rsp)
movq %r9,%r12

More Examples

• One way to do complex instruction selection

UW CSE 401/M501 Fall 2023 N-24

subq $8,%rax
movq %r2,0(%rax)
%rax modified
before next read

movq %r2,-8(%rax)

movq 16(%rsp),%rax
addq $1,%rax
movq %rax,16(%rsp)
%rax modified
before next read

incq 16(%rsp)

Algebraic Simplification
• “constant folding”, “strength reduction”

– z = 3 + 4; ➙ z = 7
– z = x + 0; ➙ z = x
– z = x * 1; ➙ z = x
– z = x * 2; ➙ z = x << 1 or z = x + x
– z = x * 8; ➙ z = x << 3
– z = x / 8; ➙ z = x >> 3 (only if know x>=0)
– z = (x + y) - y; ➙ z = x (maybe; not doubles,
 might change int overflow)

• Can be done at many levels from peephole on up
• Why do these examples happen?

– Often created during conversion to lower-level IR, by other optimizations, code gen, etc.

UW CSE 401/M501 Fall 2023 N-25

Local Optimizations

• Analysis and optimizations within a basic block
• Basic block: straight-line sequence of

statements
– no control flow into or out of middle of sequence

• Better than peephole
• Not too hard to implement with reasonable IR

• Machine-independent, if done on IR

UW CSE 401/M501 Fall 2023 N-26

Local Constant Propagation
• If variable assigned a constant, replace downstream

uses of the variable with the constant (until variable
reassigned)

• Can enable more constant folding
– Code; unoptimized intermediate code:

UW CSE 401/M501 Fall 2023 N-27

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = count;
t2 = 5;
t3 = t1 * t2;
x = t3;
t4 = x;
t5 = 3;
t6 = exp(t4,t5);
y = t6;
x = 7

Local Constant Propagation
• If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

• Can enable more constant folding
– Code; constant propagation:

UW CSE 401/M501 Fall 2023 N-28

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10; // cp count
t2 = 5;
t3 = 10 * t2; // cp t1
x = t3;
t4 = x;
t5 = 3;
t6 = exp(t4,3); // cp t5
y = t6;
x = 7

Local Constant Propagation
• If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

• Can enable more constant folding
– Code; constant folding:

UW CSE 401/M501 Fall 2023 N-29

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10;
t2 = 5;
t3 = 50; // 10*t2
x = t3;
t4 = x;
t5 = 3;
t6 = exp(t4,3);
y = t6;
x = 7;

Local Constant Propagation
• If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

• Can enable more constant folding
– Code; repropagated intermediate code

UW CSE 401/M501 Fall 2023 N-30

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10;
t2 = 5;
t3 = 50;
x = 50; // cp t3
t4 = 50; // cp x
t5 = 3;
t6 = exp(50,3); // cp t4
y = t6;
x = 7;

Local Constant Propagation
• If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

• Can enable more constant folding
– Code; refold intermediate code

UW CSE 401/M501 Fall 2023 N-31

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10;
t2 = 5;
t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000; // cf 50^3
y = t6;
x = 7;

Local Constant Propagation
• If variable assigned a constant, replace downstream

uses of the variable with constant (until variable
reassigned)

• Can enable more constant folding
– Code; repropagated intermediate code

UW CSE 401/M501 Fall 2023 N-32

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10;
t2 = 5;
t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000; // cp t6
x = 7;

Local Dead Assignment Elimination

• If l.h.s. of assignment never referenced again before being
overwritten, then can delete assignment
– Why would this happen?

Clean-up after previous optimizations, often

UW CSE 401/M501 Fall 2023 N-33

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10;
t2 = 5;
t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000;
x = 7;

Local Dead Assignment Elimination

• If l.h.s. of assignment never referenced again before being
overwritten, then can delete assignment
– Why would this happen?

Clean-up after previous optimizations, often

UW CSE 401/M501 Fall 2023 N-34

count = 10;
... // count not changed
x = count * 5;
y = x ^ 3;
x = 7;

count = 10;
t1 = 10;
t2 = 5;
t3 = 50;
x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000;
x = 7;

Can’t delete if x=50 potentially
visible, e.g., after exception

Local Common Subexpression
Elimination
• Look for repetitions of the same computation. Eliminate

them if result won’t have changed and no side effects
– Avoid repeated calculation and eliminates redundant loads

• Idea: walk through basic block keeping track of available expressions

UW CSE 401/M501 Fall 2023 N-35

... a[i] + b[i] ...
t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = *(fp + ioffset);
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset);
t9 = t4 + t8;

Local Common Subexpression
Elimination
• Look for repetitions of the same computation. Eliminate

them if result won’t have changed and no side effects
– Avoid repeated calculation and eliminates redundant loads

• Idea: walk through basic block keeping track of available expressions

UW CSE 401/M501 Fall 2023 N-36

... a[i] + b[i] ...
t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = t1; // CSE
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset);
t9 = t4 + t8;

Local Common Subexpression
Elimination
• Look for repetitions of the same computation. Eliminate

them if result won’t have changed and no side effects
– Avoid repeated calculation and eliminates redundant loads

• Idea: walk through basic block keeping track of available expressions

UW CSE 401/M501 Fall 2023 N-37

... a[i] + b[i] ...
t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = t1;
t6 = t1 * 4; // CP
t7 = fp + t6;
t8 = *(t7 + boffset);
t9 = t4 + t8;

Local Common Subexpression
Elimination
• Look for repetitions of the same computation. Eliminate

them if result won’t have changed and no side effects
– Avoid repeated calculation and eliminates redundant loads

• Idea: walk through basic block keeping track of available expressions

UW CSE 401/M501 Fall 2023 N-38

... a[i] + b[i] ...
t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = t1;
t6 = t2; // CSE
t7 = fp + t2; // CP
t8 = *(t7 + boffset);
t9 = t4 + t8;

Local Common Subexpression
Elimination
• Look for repetitions of the same computation. Eliminate

them if result won’t have changed and no side effects
– Avoid repeated calculation and eliminates redundant loads

• Idea: walk through basic block keeping track of available expressions

UW CSE 401/M501 Fall 2023 N-39

... a[i] + b[i] ...
t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = t1;
t6 = t2;
t7 = t3; // CSE
t8 = *(t3 + boffset); //CP
t9 = t4 + t8;

Local Common Subexpression
Elimination
• Look for repetitions of the same computation. Eliminate

them if result won’t have changed and no side effects
– Avoid repeated calculation and eliminates redundant loads

• Idea: walk through basic block keeping track of available expressions

UW CSE 401/M501 Fall 2023 N-40

... a[i] + b[i] ...
t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);
t5 = t1; // DAE
t6 = t2; // DAE
t7 = t3; // DAE
t8 = *(t3 + boffset);
t9 = t4 + t8;

Intraprocedural optimizations

• Enlarge scope of analysis to whole procedure
– more opportunities for optimization
– have to deal with branches, merges, and loops

• Can do constant propagation, common
subexpression elimination, etc. at “global”
level

• Can do new things, e.g. loop optimizations
• Optimizing compilers often work at this level

(-O2)

UW CSE 401/M501 Fall 2023 N-41

Code Motion

• Goal: move loop-invariant calculations out of loops
• Can do at source level or at intermediate code level

UW CSE 401/M501 Fall 2023 N-42

for (i = 0; i < 10; i = i+1) {
 a[i] = a[i] + b[j];
 z = z + 10000;
}

t1 = b[j];
t2 = 10000;
for (i = 0; i < 10; i = i+1) {
 a[i] = a[i] + t1;
 z = z + t2;
}

Code Motion at IL

UW CSE 401/M501 Fall 2023 N-43

for (i = 0; i < 10; i = i+1) {
 a[i] = b[j];
}

*(fp + ioffset) = 0;
label top;
 t0 = *(fp + ioffset);
 iffalse (t0 < 10) goto done;
 t1 = *(fp + joffset);
 t2 = t1 * 4;
 t3 = fp + t2;
 t4 = *(t3 + boffset);
 t5 = *(fp + ioffset);
 t6 = t5 * 4;
 t7 = fp + t6;
 *(t7 + aoffset) = t4;
 t9 = *(fp + ioffset);
 t10 = t9 + 1;
 *(fp + ioffset) = t10;
 goto top;
label done;

Code Motion at IL

UW CSE 401/M501 Fall 2023 N-45

for (i = 0; i < 10; i = i+1){
 a[i] = b[j];
}

*(fp + ioffset) = 0;
label top;
 t0 = *(fp + ioffset);
 iffalse (t0 < 10) goto done
 t1 = *(fp + joffset);
 t2 = t1 * 4;
 t3 = fp + boffset;
 t4 = *(t3 + t2);
 t5 = *(fp + ioffset);
 t6 = t5 * 4;
 t7 = fp + aoffset;
 *(t7 + t6) = t4;
 t9 = *(fp + ioffset);
 t10 = t9 + 1;
 *(fp + ioffset) = t10;
 goto top;
label done;

t11 = fp + ioffset;
t12 = fp + joffset;
t13 = fp + boffset;
t14 = fp + aoffset;
*(fp + ioffset) = 0;
label top;
 t0 = *t11;
 iffalse (t0 < 10) goto done
 t1 = *t12;
 t2 = t1 * 4;
t3 = t13;

 t4 = *(t13 + t2);
 t5 = *t11;
 t6 = t5 * 4;
t7 = t14;

 *(t14 + t6) = t4;
 t9 = *t11;
 t10 = t9 + 1;
 *t11 = t10;
 goto top;
label done;

Loop Induction Variable Elimination

• Common special case of loop-based strength reduction
• For-loop index is induction variable
– incremented each time around loop
– offsets & pointers calculated from it

• If used only to index arrays, rewrite with pointers
– compute initial offsets/pointers before loop
– increment offsets/pointers each time around loop
– no expensive

scaling in loop
– then do loop-

invariant code
motion

UW CSE 401/M501 Fall 2023 N-47

for (i = 0; i < 10; i = i+1){
 a[i] = a[i] + x;
}

for (p = &a[0]; p < &a[10]; p = p+4){
 *p = *p + x;
}

Interprocedural Optimization

• Expand scope of analysis to procedures calling
each other

• Can do local & intraprocedural optimizations
at larger scope

• Can do new optimizations, e.g. inlining

UW CSE 401/M501 Fall 2023 N-48

Inlining: replace call with body
• Replace procedure call with body of callee
• Source:

final double pi = 3.1415927;
double circle_area(double radius) {
 return pi * (radius * radius);
}
...
double r = 5.0;
...
double a = circle_area(r);

• After inlining:
...
double r = 5.0;
...
double a = pi * r * r;

• (Then what? Constant propagation/folding)

UW CSE 401/M501 Fall 2023 N-49

Especially important
for object getter/setter
methods, to avoid
overhead for these
frequent but trivial
procedure calls

Actually, closer to this:
 double t = r
 double a = pi * t * t
And worry about scopes, etc.

Data Structures for Optimizations
• Need to represent control and data flow
• Control flow graph (CFG) captures flow of control

– nodes are IL statements, or whole basic blocks
– edges represent (all possible) control flow
– node with multiple successors = branch/switch
– node with multiple predecessors = merge
– cycle in graph = loop

• Data flow graph (DFG) captures flow of data, e.g. def/use
chains:
– nodes are def(inition)s and uses
– edge from def to use
– a def can reach multiple uses
– a use can have multiple reaching defs (different control flow

paths, possible aliasing, etc.)
• SSA: another widely used way of linking defs and uses

UW CSE 401/M501 Fall 2023 N-50

Analysis and Transformation
• Each optimization is made up of
– some number of analyses
– followed by a transformation

• Analyze CFG and/or DFG by propagating info forward
or backward along CFG and/or DFG edges
– merges in graph require combining info
– loops in graph require iterative approximation

• Perform (improving) transformations based on info
computed

• Analysis must be conservative/safe/sound so that
transformations preserve program behavior

UW CSE 401/M501 Fall 2023 N-51

Example: Constant Propagation, Folding

• Can use either the CFG or the DFG
• CFG analysis info: table mapping each variable in scope to one of:

– a particular constant
– NonConstant
– Undefined

• Transformation at each instruction:
– If an assignment of a constant to a variable, set variable as a constant

with known value
– If reference to a variable that the table maps to a constant, then

replace with that constant (constant propagation)
– if r.h.s. expression involves only constants, and has no side-effects,

then perform operation at compile-time and replace r.h.s. with
constant result (constant folding)

• For best analysis, do constant folding as part of analysis, to learn all
constants in one pass

UW CSE 401/M501 Fall 2023 N-52

Merging data flow analysis info

• Constraint: merge results must be sound
– if something is believed true after the merge, then it must

be true no matter which path we took into the merge
– only things true along all predecessors are true after the

merge
• To merge two maps of constant information, build map

by merging corresponding variable information
• To merge information about two variables:
– if one is Undefined, keep the other
– if both are the same constant, keep that constant
– otherwise, degenerate to NonConstant (NC)

UW CSE 401/M501 Fall 2023 N-53

Example Merges

UW CSE 401/M501 Fall 2023 N-54

int x

x := 5 x := 5

x ==?

int x

x := 5 x := 4

x ==?

int x

x := 5

x ==?

Example Merges

UW CSE 401/M501 Fall 2023 N-55

int x

x := 5

x ==?

int x

x := 5 x := f(…)

x ==?

How to analyze loops
i = 0;
x = 10;
y = 20;
while (...) {
 // what’s true here?
 ...
 i = i + 1;
 y = 30;
}
// what’s true here?
... x ... i ... y ...

• Safe but imprecise:
forget everything when
we enter or exit a loop

• Precise but unsafe: keep
everything when we
enter or exit a loop

• Can we do better?

UW CSE 401/M501 Fall 2023 N-56

Loop Terminology

UW CSE 401/M501 Fall 2023 N-57

preheader

entry edge

head

back
edge

tail

loop

exit edge

Optimistic Iterative Analysis

• Initially assume information at loop head is same as
information at loop entry

• Then analyze loop body, computing information at
back edge

• Merge information at loop back edge and loop entry
• Test if merged information is same as original

assumption
– If so, then we’re done
– If not, then replace previous assumption with merged

information,
– and go back to analysis of loop body

UW CSE 401/M501 Fall 2023 N-58

Example
i = 0;
x = 10;
y = 20;
while (...) {
 // what’s true here?
 ...
 i = i + 1;
 y = 30; }
// what’s true here?
... x ... i ... y ...

UW CSE 401/M501 Fall 2023 N-59

i = 0, x = 10, y = 20

i = 1, x = 10, y = 30

Example
i = 0;
x = 10;
y = 20;
while (...) {
 // what’s true here?
 ...
 i = i + 1;
 y = 30; }
// what’s true here?
... x ... i ... y ...

UW CSE 401/M501 Fall 2023 N-60

i = NC, x = 10, y = NC

i = NC, x = 10, y = NC

Why does this work?

• Why are the results always conservative?
• Because if the algorithm stops, then
– the loop head info is at least as conservative as both

the loop entry info and the loop back edge info
– the analysis within the loop body is conservative,

given the assumption that the loop head info is
conservative

• Will it terminate?
– Yes, if there are only a finite number of times we can

merge information before reaching worst-case info
(e.g., NonConstant / NC in this example)

UW CSE 401/M501 Fall 2023 N-61

Termination – more generally

• Suppose alg has a “state” vector x = (x1,x2,…,xn), each xi
 from a finite, ordered set, say {0,1} or {1,2,3}

• If each state transition (iteration of an alg, such as prev few
slides) allowed, say, xi to go up while xj goes down, then ∞
iteration is possible: (0,1) → (1,0) → (0,1) → …

• BUT, if alg ensures that, at each iteration, old-xi ≤ new-xi, then
termination is certain: You can only increase xi a finite number
of times before you hit the top value

• E.g., if xi ∈ {0,1}, x = (x1,x2,…,xn) are corners of an n-cube; at
worst, alg walks from (0,0,…,0) to (1,1,…,1) in ≤ n steps

• Math Jargon: such a structure is typically called a “lattice”.

UW CSE 401/M501 Fall 2023 N-62

(0,0,0)

(1,1,1)

More analyses
• Alias analysis

– Detect when different references may or must refer to the same
memory locations

• Escape analysis
– Pointers that are live on exit from procedures
– Pointed-to data may “escape” to other procedures or threads

• Dependence analysis
– Determining which references depend on which other

references
– One application: analyze array subscripts that depend on loop

induction variables to determine which loop iterations depend
on each other
• Key analysis for loop parallelization/vectorization

UW CSE 401/M501 Fall 2023 63

Summary
• Optimizations organized as collections of passes, each

rewriting IL in place into (hopefully) better version
• Each pass does analysis to determine what is possible,

followed by transformation(s) that (hopefully) improve
the program
– Sometimes “analysis-only” passes are helpful
– Often redo analysis/transformations again to take

advantage of possibilities revealed by previous changes
• Presence of optimizations makes other parts of

compiler (e.g. intermediate and target code
generation) easier to write since they can defer to
optimization pass to improve/clean up simple-and-
easy-to-generate-correct-but-not-clever code

UW CSE 401/M501 Fall 2023 N-64

