
CSE 401/M501 – Compilers

x86-64, Running MiniJava,
Basic Code Generation and Bootstrapping

Hal Perkins & CSE 401/M501 staff
Fall 2023

UW CSE 401/M501 Fall 2023 M-1

Administrivia

• Final part of the project – codegen – out now
– Due in 2 weeks. This is shorter than semantics /

types, although there is 🦃 next week so don’t put
it off until after that

Biggest hurdle is getting started
Goal: get System.out.println(17) in main method working
by early this weekend

Once that’s done, look at writeup for one
reasonable order to add codegen for different
language features, then work incrementally

UW CSE 401/M501 Fall 2023 M-2

Running MiniJava Programs

• To run a MiniJava program
– Space needs to be allocated for a stack and a heap
– %rsp and other registers need to have sensible

initial values
– We need some way to allocate storage (for new)

and communicate with the outside world

UW CSE 401/M501 Fall 2023 M-3

Bootstrapping from C

• Idea: take advantage of the existing C runtime
library

• Use a small C main program to call the
MiniJava main method as if it were a C
function

• C’s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc/calloc, etc.

UW CSE 401/M501 Fall 2023 M-4

Assembler File Format
• Compiler output is an assembly language program (ascii .s)

written to stdout (redirect to file with ant or command line)
• GNU syntax is roughly this (src/runtime/demo.s in

project starter code is a runnable asm program, although not
generated by a MiniJava compiler)

.text # code segment

.globl asm_main # label at start of compiled static main
<generated code>

asm_main: # start of compiled "main"
 ...

.data
<generated method tables>
repeat .text/.data as needed
…
end

UW CSE 401/M501 Fall 2023 M-5

External Names

• In a Linux environment, an external symbol is
used as-is (xyzzy)

• In Windows and x86-64 MacOS, an external
symbol xyzzy is written in asm code as
_xyzzy (leading underscore)

• Your compiler needs to generate code that
runs on attu using Linux conventions, but if
you want to support others as an option, feel
free to add a compiler switch or something

UW CSE 401/M501 Fall 2023 M-6

Generating .asm Code

• Suggestion: isolate the actual compiler output
operations in a handful of routines
– Usual modularity reasons & saves some typing
– Some possibilities

// write code string s to .asm output
void gen(String s) { ... }

// write "op src,dst" to .asm output

void genbin(String op, String src, String dst) {...}

// write label lbl to .asm output as "lbl:"
void genLabel(String lbl) { ... }

– A handful of these methods should do it

UW CSE 401/M501 Fall 2023 M-7

A Simple Code Generation Strategy

• Goal: quick ‘n dirty correct code; “optimize” later
if time

• Traverse AST primarily in execution order and
emit code during the traversal
– Codegen visitor might want to traverse the tree in ad-

hoc ways depending on sequence that parts need to
appear in the asm code

• Treat the x86-64 as a 1-register machine with a
stack to hold additional intermediate values(!)
– Ugly code, but will work – better later if there’s time

UW CSE 401/M501 Fall 2023 M-8

(The?) Simplifying Assumption

• Store all values (reference, int, boolean) in 64-
bit quadwords
– Natural size for 64-bit pointers, i.e., object

references (variables of class types)
– C’s “long” size for integers
• Use int64_t or uint64_t in any C code that

interacts with MiniJava generated code to guarantee
size (declared in <stdint.c>)

UW CSE 401/M501 Fall 2023 M-9

Before Codegen Visitor Pass…

• Need an initial pass through class and method
symbol tables to assign locations to variables
– Method local variables: successive offsets in the stack

frame relative to %rbp (-8, -16, …)
• Also for parameters – place to store copies in stack frame

when needed (or always, to keep things simple)
– Object instance variables: successive offsets from the

start of the object (+0 is vtable pointer, instance
variables at +8, +16, …)

• This will also compute the size of each stack
frame and object which is needed later

UW CSE 401/M501 Fall 2023 M-10

x86 as a Stack Machine
• Idea: Use x86-64 stack for expression evaluation with
%rax as the logical “top” of the stack (initially empty)

• Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the
result in %rax

• If a value needs to be preserved while another
expression is evaluated, push %rax, evaluate, then
pop when first value is needed
– Remember: always pop what you push
– Will produce lots of redundant, but correct, code

• Examples below follow code shape examples, but with
more details about code generation

UW CSE 401/M501 Fall 2023 M-11

Example: Generate Code for Constants
and Identifiers
Integer constants, say 17

 gen(movq $17,%rax)
• leaves value in %rax

Local variables (any type – int, bool, reference)
 gen(movq varoffset(%rbp),%rax)

Instance variables (“this.var”)
 gen(movq varoffset(%rdi),%rax)

UW CSE 401/M501 Fall 2023 M-12

Example: Generate Code for exp1 + exp2

Visit exp1
– generates code to evaluate exp1 with result in %rax

gen(pushq %rax)
– push exp1 onto stack

Visit exp2
– generates code for exp2; result in %rax

gen(popq %rdx)
– pop left argument into %rdx; cleans up stack

gen(addq %rdx,%rax)
– perform the addition; result in %rax

UW CSE 401/M501 Fall 2023 M-13

Example: var = exp; (1)

Assuming that var is a local variable
Visit node for exp
• Generates code to eval exp and leave result in %rax

gen(movq %rax,offset_of_variable(%rbp))

Similar code if var is part of an object, but use
pointer to the object instead of %rbp

UW CSE 401/M501 Fall 2023 M-14

Example: var = exp; (2)

If var is a more complex expression (object
instance variable or array element, for example)

visit var
gen(pushq %rax)
• push lvalue (address) of variable or object containing

variable onto stack
visit exp
• leaves rhs value in %rax

gen(popq %rdx)
gen(movq %rax,appropriate_offset(%rdx))

UW CSE 401/M501 Fall 2023 M-15

Example: Generate Code for obj.f(e1,e2,…en)

In principal the code should work like this:
Visit obj

• leaves reference to object in %rax
gen(movq %rax,%rdi)

• “this” pointer is first argument
Visit e1, e2, …, en. For each argument,

• gen(movq %rax,%correct_argument_register)
generate code to load method table pointer located at
0(%rdi) into some register, probably %rax
generate call instruction with indirect jump

UW CSE 401/M501 Fall 2023 M-16

Method Call Complications

• Big one: code to evaluate any argument might clobber
argument registers (i.e., computing an argument value
might require a method call)
– Possible strategy to cope on next slides, but feel free to do

something better
• And more: clobbers current method’s %rdi (this ptr)
– Save it on method entry; reload after call (or on every use)

• Other one: what if a method has too many
parameters?
– OK for CSE 401/M501 to assume all methods have ≤ 5

parameters plus “this” – do better if you want

UW CSE 401/M501 Fall 2023 M-17

Method Calls in Parameters

• Suggestion to avoid trouble:
– Evaluate parameters and push them on the stack
– Right before the call instruction, pop the

parameters into the correct registers

• But….

UW CSE 401/M501 Fall 2023 M-18

Stack Alignment (1)

• Above idea hack works provided we don’t call a
method while an odd number of parameter values are
pushed on the stack!
– (violates 16-byte alignment on method call…)

• We have a similar problem if an odd number of
intermediate values are pushed on the stack when we
call a method while evaluating an expression
– (We might get away with it if it only involves calls to our

own generated, not library, code, but it would be wrong*
to do that)

 *i.e., might “work”, but it’s not the right way to solve the problem

UW CSE 401/M501 Fall 2023 M-19

Stack Alignment (2)

• Workable solution: keep a counter in the code
generator of how much has been pushed on the
stack. If needed, emit extra gen(pushq %rax) (or
some other register) to push a useless value and
align the stack before generating a call instruction
– Be sure to pop it after!!

• Another (cleaner, but more work) solution: make
stack frame big enough and use movq instead of
pushq to store arguments and temporaries
– Needs extra bookkeeping to keep track of how much

to allocate and how temps are used and where they
are in the stack frame

UW CSE 401/M501 Fall 2023 M-20

Sigh…

• Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a
fancy decent register allocator

• Feel free to do better than this simple
push/pop scheme – but remember, simple
and works wins over fancy and not finished or
broken

UW CSE 401/M501 Fall 2023 M-21

Code Gen for Method Definitions

• Generate label for method
Classname$methodname:

• Generate method prologue
push %rbp, copy %rsp to %rbp, subtract frame size
(multiple of 16) from %rsp

• Visit statements in order
– Method epilogue is normally generated as part of

a return statement (details shortly)
– In MiniJava the return is generated after visiting

the rest of the method body to generate its code

UW CSE 401/M501 Fall 2023 M-22

Registers again…

• Method parameters are in registers
• But code generated for methods also will be

using registers, even if there are no calls to other
methods

• So how do we avoid clobbering parameters?
• Suggestion: Allocate space in the stack frame and

save copies of all parameter registers on method
entry. Use those copies as local variables when
you need to reference a parameter.

UW CSE 401/M501 Fall 2023 M-23

Example: return exp;

• Visit exp; this leaves result in %rax where it
should be

• Generate method epilogue (copy %rbp to
%rsp, pop %rbp) to unwind the stack frame;
follow with ret instruction
– Can use leave instead of movq/popq to unwind

the stack, but the separate instructions might be a
little easier to debug if something isn’t right

UW CSE 401/M501 Fall 2023 M-24

Control Flow: Unique Labels

• Needed in code generator: a String-valued
method that returns a different label each
time it is called (e.g., L1, L2, L3, …)

– Improvement: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)
• (while1, while2, while3, …; if1, if2, …; else1, else2, …;

endif1, endif2, … .)

UW CSE 401/M501 Fall 2023 M-25

Control Flow: Tests

• Recall that the context for compiling a boolean
expression is:
– Label or address of jump target
– Whether to jump if true or false

• So the visitor for a boolean expression should
receive this information from the parent node

UW CSE 401/M501 Fall 2023 M-26

Example: while(exp) body

• Assuming we want the test at the bottom of
the generated loop…
gen(jmp testLabel)
gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp (condition) with target=bodyLabel and
sense=“jump if true”

UW CSE 401/M501 Fall 2023 M-27

Example: exp1 < exp2

• Similar to other binary operators
• Difference: surrounding (parent) context is a

target label and whether to jump if true or false
• Code

visit exp1
gen(pushq %rax)
visit exp2
gen(popq %rdx)
gen(cmpq %rdx,%rax)
gen(condjump targetLabel)

• appropriate conditional jump depending on sense of test

UW CSE 401/M501 Fall 2023 M-28

Boolean Operators

&& (and || if you add it)
– Create label(s) needed to skip around the parts of

the expression
– Generate subexpressions with appropriate target

labels and conditions

!exp
– Generate exp with same target label, but reverse

the sense of the condition

UW CSE 401/M501 Fall 2023 M-29

Reality check

• Lots of projects in the past have evaluated all
booleans to get 1 or 0, then tested that value
for control flow

• Would be nice to do better (as above), but
“simple and works…”

• (And we need to be able to generate the 0/1
anyway for storable boolean expressions)

UW CSE 401/M501 Fall 2023 M-30

Join Points
• Loops and conditional statements have join points where

execution paths merge
• Generated code must ensure that machine state will be

consistent regardless of which path is taken to get there
– i.e., the paths through an if-else statement must not leave a

different number of values pushed onto the stack
– If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to move the value to the correct register

• With our simple 1-accumulator model of code generation,
this should usually be true without needing extra work;
with better use of registers it becomes a bigger issue
– With more registers, would need to be sure they are used

consistently at join point regardless of how we get there

UW CSE 401/M501 Fall 2023 M-31

Bootstrap Program

• The bootstrap is a tiny C program that calls your
compiled code as if it were an ordinary C function

• It also contains some functions that compiled
code can call as needed
– MiniJava “runtime library”
– Add to this if you like

• Sometimes simpler to generate a call to a new library
routine instead of generating in-line code

• Suggestion: do this for “exit if subscript out of bounds” check

• File: src/runtime/boot.c in project starter code

UW CSE 401/M501 Fall 2023 M-32

Bootstrap Program Sketch

#include <stdio.h>
extern void asm_main(); /* compiled code */
/* execute compiled program */
void main() { asm_main(); }
/* write x to standard output */
void put(int64_t x) { … }
/* return a pointer to a zeroed-out block of memory at

least nBytes large (or null on failure) */
char* mjcalloc(size_t nBytes) { return calloc(1,nBytes); }

UW CSE 401/M501 Fall 2023 M-33

Main Program Label

• Compiler needs special handling for the
publicstaticvoid main method label
– Label must be the same as the one declared
extern in the C bootstrap program and declared
.globl in the assembly code

– asm_main used above
• Could be changed, but probably no point
• Why not “main”? (Hint: where is the real main?)

UW CSE 401/M501 Fall 2023 M-34

Interfacing to “Library” code

• Trivial to call “library” functions
• Evaluate parameters using the regular calling

conventions
– But no “this” parameter since we’re calling C code

• Generate a call instruction using the “library”
function label
– (External names need leading _ in Windows, OS X)
– Linker will hook everything up

UW CSE 401/M501 Fall 2023 M-35

System.out.println(exp)

MiniJava’s “print” statement
<compile exp; result in %rax>
movq %rax,%rdi # load argument register
call put # call external put routine

• If the stack is not properly 16-byte aligned
when call is executed, calls to external C or
library code can cause a runtime error (will
cause error halt on x86-64 MacOS)

UW CSE 401/M501 Fall 2023 M-36

If you want to run code on an Intel Mac…
• Your compiled code should work on a x86-64 mac, but

need to deal with a few things:
– External labels need to start with _ (e.g., _put)
– %rsp must be 16-byte aligned when call is executed (should

be anyway, but Linux will probably let you get away with 8-byte
alignment)

– Addressing modes: assembler might reject
leaq label,%rax. Use leaq label(%rip),%rax
instead (explicit base reg.; also works fine on Linux)

– Hard to run gdb on a mac. Use clang/lldb instead
– New annoyance on MacOS Ventura (& later?): may need to

include .align 8 in assembler code before each vtable to
stop linker complaints

• And be sure that things run on attu/cse vm Linux in your
final version!!! (No external _labels)

UW CSE 401/M501 Fall 2023 M-37

And That’s It…

• We’ve now got enough on the table to
complete the compiler code generator

• Past & Future Attractions
– Lower-level IR and control-flow graphs
– Mid part of compiler (optimizations)
– Back end (industrial-strength instruction selection,

scheduling, and register allocation)

UW CSE 401/M501 Fall 2023 M-38

