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Administrivia

• Final part of the project – codegen – out now
– Due in 2 weeks.  This is shorter than semantics / 

types, although there is 🦃 next week so don’t put 
it off until after that

Biggest hurdle is getting started
Goal: get System.out.println(17) in main method working 
by early this weekend

Once that’s done, look at writeup for one 
reasonable order to add codegen for different 
language features, then work incrementally
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Running MiniJava Programs

• To run a MiniJava program
– Space needs to be allocated for a stack and a heap
– %rsp and other registers need to have sensible 

initial values
– We need some way to allocate storage (for new) 

and communicate with the outside world
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Bootstrapping from C

• Idea: take advantage of the existing C runtime 
library 

• Use a small C main program to call the 
MiniJava main method as if it were a C 
function

• C’s standard library provides the execution 
environment and we can call C functions from 
compiled code for I/O, malloc/calloc, etc.
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Assembler File Format
• Compiler output is an assembly language program (ascii .s) 

written to stdout (redirect to file with ant or command line)
• GNU syntax is roughly this (src/runtime/demo.s in 

project starter code is a runnable asm program, although not 
generated by a MiniJava compiler)

.text    # code segment

.globl asm_main # label at start of compiled static main
<generated code>

asm_main:    # start of compiled "main"
 ...

.data
<generated method tables>  
# repeat .text/.data as needed
…
end
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External Names

• In a Linux environment, an external symbol is 
used as-is (xyzzy)

• In Windows and x86-64 MacOS, an external 
symbol xyzzy is written in asm code as 
_xyzzy (leading underscore)

• Your compiler needs to generate code that 
runs on attu using Linux conventions, but if 
you want to support others as an option, feel 
free to add a compiler switch or something
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Generating .asm Code

• Suggestion: isolate the actual compiler output 
operations in a handful of routines
– Usual modularity reasons & saves some typing
– Some possibilities

// write code string s to .asm output
void gen(String s) { ... }

// write "op  src,dst" to .asm output

void genbin(String op, String src, String dst) {...}

// write label lbl to .asm output as "lbl:"
void genLabel(String lbl) { ... }

– A handful of these methods should do it

UW CSE 401/M501 Fall 2023 M-7



A Simple Code Generation Strategy

• Goal: quick ‘n dirty correct code; “optimize” later 
if time

• Traverse AST primarily in execution order and 
emit code during the traversal
– Codegen visitor might want to traverse the tree in ad-

hoc ways depending on sequence that parts need to 
appear in the asm code

• Treat the x86-64 as a 1-register machine with a 
stack to hold additional intermediate values(!)
– Ugly code, but will work – better later if there’s time
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(The?) Simplifying Assumption

• Store all values (reference, int, boolean) in 64-
bit quadwords
– Natural size for 64-bit pointers, i.e., object 

references (variables of class types)
– C’s “long” size for integers
• Use int64_t or uint64_t in any C code that 

interacts with MiniJava generated code to guarantee 
size (declared in <stdint.c>)
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Before Codegen Visitor Pass…

• Need an initial pass through class and method 
symbol tables to assign locations to variables
– Method local variables: successive offsets in the stack 

frame relative to %rbp (-8, -16, …)
• Also for parameters – place to store copies in stack frame 

when needed (or always, to keep things simple)
– Object instance variables: successive offsets from the 

start of the object (+0 is vtable pointer, instance 
variables at +8, +16, …)

• This will also compute the size of each stack 
frame and object which is needed later
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x86 as a Stack Machine
• Idea: Use x86-64 stack for expression evaluation with 
%rax as the logical “top” of the stack (initially empty)

• Invariant: Whenever an expression (or part of one) is 
evaluated at runtime, the generated code leaves the 
result in %rax

• If a value needs to be preserved while another 
expression is evaluated, push %rax, evaluate, then 
pop when first value is needed
– Remember: always pop what you push
– Will produce lots of redundant, but correct, code

• Examples below follow code shape examples, but with 
more details about code generation
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Example: Generate Code for Constants 
and Identifiers
Integer constants, say 17

 gen(movq  $17,%rax)
• leaves value in %rax

Local variables (any type – int, bool, reference)
 gen(movq  varoffset(%rbp),%rax)

Instance variables (“this.var”)
 gen(movq  varoffset(%rdi),%rax)
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Example: Generate Code for exp1 + exp2

Visit exp1
– generates code to evaluate exp1 with result in %rax

gen(pushq %rax)
– push exp1 onto stack

Visit exp2
– generates code for exp2; result in %rax

gen(popq %rdx)
– pop left argument into %rdx; cleans up stack

gen(addq  %rdx,%rax)
– perform the addition; result in %rax
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Example:  var = exp;  (1)

Assuming that var is a local variable
Visit node for exp
• Generates code to eval exp and leave result in %rax

gen(movq %rax,offset_of_variable(%rbp))

Similar code if var is part of an object, but use 
pointer to the object instead of %rbp
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Example:  var = exp;  (2)

If var is a more complex expression (object 
instance variable or array element, for example)

visit var
gen(pushq %rax)
• push lvalue (address) of variable or object containing 

variable onto stack
visit exp
• leaves rhs value in %rax

gen(popq %rdx)
gen(movq %rax,appropriate_offset(%rdx))
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Example: Generate Code for obj.f(e1,e2,…en)

In principal the code should work like this:
Visit obj

• leaves reference to object in %rax
gen(movq %rax,%rdi)

• “this” pointer is first argument
Visit e1, e2, …, en.  For each argument,

• gen(movq  %rax,%correct_argument_register)
generate code to load method table pointer located at 
0(%rdi) into some register, probably %rax 
generate call instruction with indirect jump
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Method Call Complications

• Big one: code to evaluate any argument might clobber 
argument registers (i.e., computing an argument value 
might require a method call)
– Possible strategy to cope on next slides, but feel free to do 

something better
• And more: clobbers current method’s %rdi (this ptr)
– Save it on method entry; reload after call (or on every use)

• Other one: what if a method has too many 
parameters?
– OK for CSE 401/M501 to assume all methods have ≤ 5 

parameters plus “this” – do better if you want
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Method Calls in Parameters

• Suggestion to avoid trouble:
– Evaluate parameters and push them on the stack
– Right before the call instruction, pop the 

parameters into the correct registers

• But….
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Stack Alignment (1)

• Above idea hack works provided we don’t call a 
method while an odd number of parameter values are 
pushed on the stack! 
– (violates 16-byte alignment on method call…)

• We have a similar problem if an odd number of 
intermediate values are pushed on the stack when we 
call a method while evaluating an expression
– (We might get away with it if it only involves calls to our 

own generated, not library, code, but it would be wrong* 
to do that)

 *i.e., might “work”, but it’s not the right way to solve the problem
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Stack Alignment (2)

• Workable solution: keep a counter in the code 
generator of how much has been pushed on the 
stack.  If needed, emit extra gen(pushq %rax) (or 
some other register) to push a useless value and 
align the stack before generating a call instruction
– Be sure to pop it after!!

• Another (cleaner, but more work) solution: make 
stack frame big enough and use movq instead of 
pushq to store arguments and temporaries
– Needs extra bookkeeping to keep track of how much 

to allocate and how temps are used and where they 
are in the stack frame
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Sigh…

• Multiple registers for method arguments is a 
big win compared to pushing on the stack, but 
complicates our life since we do not have a 
fancy decent register allocator

• Feel free to do better than this simple 
push/pop scheme – but remember, simple 
and works wins over fancy and not finished or 
broken
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Code Gen for Method Definitions

• Generate label for method
Classname$methodname:

• Generate method prologue
push %rbp, copy %rsp to %rbp, subtract frame size 
(multiple of 16) from %rsp

• Visit statements in order
– Method epilogue is normally generated as part of 

a return statement (details shortly)
– In MiniJava the return is generated after visiting 

the rest of the method body to generate its code
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Registers again…

• Method parameters are in registers
• But code generated for methods also will be 

using registers, even if there are no calls to other 
methods

• So how do we avoid clobbering parameters?
• Suggestion: Allocate space in the stack frame and 

save copies of all parameter registers on method 
entry.  Use those copies as local variables when 
you need to reference a parameter.
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Example: return exp;

• Visit exp;  this leaves result in %rax where it 
should be

• Generate method epilogue (copy %rbp to 
%rsp, pop %rbp) to unwind the stack frame; 
follow with ret instruction
– Can use leave instead of movq/popq to unwind 

the stack, but the separate instructions might be a 
little easier to debug if something isn’t right
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Control Flow: Unique Labels

• Needed in code generator: a String-valued 
method that returns a different label each 
time it is called (e.g., L1, L2, L3, …)

– Improvement: a set of methods that generate 
different kinds of labels for different constructs 
(can really help readability of the generated code)
• (while1, while2, while3, …; if1, if2, …; else1, else2, …; 

endif1, endif2, … .)
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Control Flow: Tests

• Recall that the context for compiling a boolean 
expression is:
– Label or address of jump target
– Whether to jump if true or false

• So the visitor for a boolean expression should 
receive this information from the parent node
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Example: while(exp) body

• Assuming we want the test at the bottom of 
the generated loop…
gen(jmp testLabel)
gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp (condition) with target=bodyLabel and 
sense=“jump if true”
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Example:  exp1 < exp2

• Similar to other binary operators
• Difference: surrounding (parent) context is a 

target label and whether to jump if true or false
• Code

visit exp1
gen(pushq %rax)
visit exp2
gen(popq %rdx)
gen(cmpq %rdx,%rax)
gen(condjump targetLabel)

• appropriate conditional jump depending on sense of test
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Boolean Operators

&& (and || if you add it)
– Create label(s) needed to skip around the parts of 

the expression
– Generate subexpressions with appropriate target 

labels and conditions

!exp
– Generate exp with same target label, but reverse 

the sense of the condition
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Reality check

• Lots of projects in the past have evaluated all 
booleans to get 1 or 0, then tested that value 
for control flow

• Would be nice to do better (as above), but 
“simple and works…”

• (And we need to be able to generate the 0/1 
anyway for storable boolean expressions)
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Join Points
• Loops and conditional statements have join points where 

execution paths merge
• Generated code must ensure that machine state will be 

consistent regardless of which path is taken to get there
– i.e., the paths through an if-else statement must not leave a 

different number of values pushed onto the stack
– If we want a particular value in a particular register at a join 

point, both paths must put it there, or we need to generate 
additional code to move the value to the correct register

• With our simple 1-accumulator model of code generation, 
this should usually be true without needing extra work; 
with better use of registers it becomes a bigger issue
– With more registers, would need to be sure they are used 

consistently at join point regardless of how we get there
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Bootstrap Program

• The bootstrap is a tiny C program that calls your 
compiled code as if it were an ordinary C function

• It also contains some functions that compiled 
code can call as needed
– MiniJava “runtime library”
– Add to this if you like

• Sometimes simpler to generate a call to a new library 
routine instead of generating in-line code

• Suggestion: do this for “exit if subscript out of bounds” check

• File: src/runtime/boot.c in project starter code
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Bootstrap Program Sketch

#include <stdio.h>
extern void asm_main();  /* compiled code */
/* execute compiled program */
void main( ) { asm_main(); }
/* write x to standard output */
void put(int64_t x) { … }
/* return a pointer to a zeroed-out block of memory at 

least nBytes large (or null on failure) */
char* mjcalloc(size_t nBytes) { return calloc(1,nBytes); }
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Main Program Label

• Compiler needs special handling for the 
publicstaticvoid main method label
– Label must be the same as the one declared 
extern in the C bootstrap program and declared 
.globl in the assembly code

–  asm_main used above
• Could be changed, but probably no point
• Why not “main”?  (Hint: where is the real main?)
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Interfacing to “Library” code

• Trivial to call “library” functions
• Evaluate parameters using the regular calling 

conventions
– But no “this” parameter since we’re calling C code

• Generate a call instruction using the “library” 
function label
– (External names need leading _ in Windows, OS X)
– Linker will hook everything up
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System.out.println(exp)

MiniJava’s “print” statement
<compile exp; result in %rax>
movq  %rax,%rdi # load argument register
call  put   # call external put routine

• If the stack is not properly 16-byte aligned 
when call is executed, calls to external C or 
library code can cause a runtime error (will 
cause error halt on x86-64 MacOS)
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If you want to run code on an Intel Mac…
• Your compiled  code should work on a x86-64 mac, but 

need to deal with a few things:
– External labels need to start with _  (e.g., _put)
– %rsp must be 16-byte aligned when call is executed (should 

be anyway, but Linux will probably let you get away with 8-byte 
alignment)

– Addressing modes: assembler might reject 
leaq label,%rax.  Use leaq label(%rip),%rax 
instead (explicit base reg.; also works fine on Linux)

– Hard to run gdb on a mac.  Use clang/lldb instead
– New annoyance on MacOS Ventura (& later?): may need to 

include .align 8 in assembler code before each vtable to 
stop linker complaints

• And be sure that things run on attu/cse vm Linux in your 
final version!!!  (No external _labels)
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And That’s It… 

• We’ve now got enough on the table to 
complete the compiler code generator

• Past & Future Attractions
– Lower-level IR and control-flow graphs
– Mid part of compiler (optimizations)
– Back end (industrial-strength instruction selection, 

scheduling, and register allocation)
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