
CSE 401/M501 – Compilers

Overview and Administrivia
Hal Perkins
Fall 2023

UW CSE 401/M501 Fall 2023 A-1

Agenda

• Introductions
• Administrivia
• What’s a compiler?
• Why you want to take this course J

UW CSE 401/M501 Fall 2023 A-2

Welcome back!
• This has been a strange world for the last few years and there’s still stress for many

• Please speak up if things aren’t (or are!) going well
– We can often help if we know about things, so stay in touch with TAs, instructor, advising,

friends and peers, others
– Don’t try to “tough it out” or pretend it will get better if you just ignore it – speak up! Don’t

wait until it’s too late!!

• We’re all in this together but not all in the same way, so please show
understanding and compassion for each other and help when you can – both in
and outside of class

• Stay healthy! If you do come down with something, please stay home until
recovered and not contagious
– Lectures are on panopto if you do need to miss (but this is not a remote-learning class)

• Please be realistic about your workload – it’s up to you to be sure you have the
time and energy to handle your academic and other commitments
– Do NOT “Ghost” your project partner!! 👻

UW CSE 401/M501 Fall 2023 A-3

Who: Course staff
• Instructor: Hal Perkins: UW faculty for a while; CSE 401

veteran (+ other compiler courses)

• TAs: Eric Chen, Jun Xing Go, Karen Haining, Varun
Pradeep, Connor Reinholdtsen, Richard Tran, Edward
Zhang, with occasional assists from Aragorn Crozier,
the TA for the related CSE P 501 PMP compiler course

• Get to know us – we’re here to help you succeed!

• Office hours start tomorrow! – posted on main website
calendar now. Mostly in-person but may add some
hybrid and zoom-only hours (use canvas calendar to
access zoom links)

UW CSE 401/M501 Fall 2023 A-4

Credits

• Some direct ancestors of this course:
– UW CSE 401 (Chambers, Snyder, Notkin, Perkins,

Ringenburg, Henry, …)
– UW CSE PMP 582/501 (Perkins)
– Rice CS 412 (Cooper, Kennedy, Torczon)
– Cornell CS 412-3 (Teitelbaum, Perkins)
– Many books (Appel; Cooper/Torczon; Aho, [[Lam,]

Sethi,] Ullman [Dragon Book]; Fischer, [Cytron ,]
LeBlanc; Muchnick, …)

• Won’t attempt to attribute everything – and
some (many?) of the details are lost in the haze
of time

UW CSE 401/M501 Fall 2023 A-5

CSE M 501

• Enhanced version for 5th-year BS/MS students.

• M501 students will have to do a significant
addition to the project, or some other extra work
if agreed with instructor (papers, reports, ???)
– More details later

• Otherwise 401 and M501 are the same (lectures,
sections, assignments, infrastructure, …)

UW CSE 401/M501 Fall 2023 A-6

So whadda ya know?

• Official prerequisites:
– CSE 332 (data abstractions)
• and therefore CSE 311 (Foundations)

– CSE 351 (hardware/software interface, x86_64)

• Also very useful, but not required:
– CSE 331 (software design & implementation)
– CSE 341 (programming languages)
– Who’s taken these?

UW CSE 401/M501 Fall 2023 A-7

Lectures & Sections

• Both required
• All material posted, but they are visual aids
– Be here! Take notes! (& do better in class!!)
– Panopto lecture recordings intended for review

and unavoidable absences only

• Sections: additional examples and exercises
plus project details and tools
– We will have sections this week – don’t miss!
– News 9/26: section AC has moved to MGH 287

UW CSE 401/M501 Fall 2023 A-8

Gadgets in class
• Gadgets reduce focus and learning
– Bursts of info (e.g. notifications, IMs, etc.) are addictive
– Heavy multitaskers have more trouble focusing and

shutting out irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-students-

put-your-laptops-away
• So how should we deal with laptops/phones/etc.?
– Just say no!
– No open gadgets during class (really!)

• Unless you are actually using a device to take notes or for other
appropriate uses….

– Urge to search? – ask a question! Everyone benefits!!
– You may close/turn off non-notetaking electronics now
– Pull out a piece of paper and pen/pencil instead J

UW CSE 401/M501 Fall 2023 A-9

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away
http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

Communications

• Course web site (www.cs.uw.edu/401)
• Discussion board – ed
– For anything related to the course
– Join in! Help each other out. Staff will contribute.
– Also use for private messages with too-specific-to-

post questions, code, etc.
– Staff will also use to post announcements

• Email to cse401-staff[at]cs for things that
need a followup, not appropriate for ed, …

UW CSE 401/M501 Fall 2023 A-10

Requirements & Grading

• We will have a midterm and final exam
– It’s an important review/reflection part we need

• Roughly:
– 50% project, done with a partner
– 25% individual written homework
– 10% midterm
– 15% final
We reserve the right to adjust as needed/appropriate

UW CSE 401/M501 Fall 2023 A-11

Academic Integrity

• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own, without proper credit if
appropriate, or assist others to do the same

• Read the course policy carefully
• We trust you to behave ethically
– We have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business or life). Anything less
disrespects your instructor, your colleagues, and yourself

UW CSE 401/M501 Fall 2023 A-12

Course Project

• Best way to learn about compilers is to build one!
• Course project
– MiniJava compiler: classes, objects, etc.

• Core parts of Java – essentials only
• Originally from Appel textbook (but you don’t need that)

– Generate executable x86-64 code & run it
– Completed in steps through the quarter

• Where you wind up at the end is by far the most important
part, but there are intermediate milestones to keep you on
schedule and provide feedback at important points

– Additional work for CSE M 501 students – details later

UW CSE 401/M501 Fall 2023 A-13

Project Groups
• You should work in pairs

– Pick a partner now to work with throughout quarter – we need
this info by early next week

– If you are in CSE M 501 you should pair up with someone else in
that group (401 ➝ M 501 switches are possible if it makes sense
for individual(s) involved)

– Partnering over networks works surprisingly well even if you
don’t intend to hang out together in the labs regularly

• We’ll provide accounts on department gitlab server for
groups to store and synchronize their work & we’ll get files
from there for project feedback / grading
– Anybody new to CSE Gitlab/Git?

UW CSE 401/M501 Fall 2023 A-14

Books

• Four good books…
– Cooper & Torczon, Engineering a Compiler.

“Official text” & we’ll take some assignments
from here. 2nd ed available free online
through UW Library Safari books login. See
syllabus.

– Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava is from here.

– Aho, Lam, Sethi, Ullman, “Dragon Book”
– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE 401/M501 Fall 2023 A-15

New 3rd edition early this year!
Either 2nd or 3rd ed. should be fine

And the point is…

• How do we execute something like this?
int nPos = 0;
int k = 0;
while (k < length) {
 if (a[k] > 0) {
 nPos++;
 }
}

• Or, more concretely, how do we program a computer to
understand and carry out a computation written as text in a
file? The computer only knows 1’s & 0’s: encodings of
instructions and data (cf CSE 351)

UW CSE 401/M501 Fall 2023 A-16

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning

– Back end: synthesis
• Generate equivalent target language program

UW CSE 401/M501 Fall 2023 A-17

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior (meaning)

• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE 401/M501 Fall 2023 A-18

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE 401/M501 Fall 2023 A-19

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Responsible for converting character stream to

token stream: keywords, operators, variables, constants, …
• Also: strips out white space, comments

– Parser: Reads token stream; generates IR
• Either here or shortly after, perform semantics analysis to check

for things like type errors, etc.

• Both of these can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE 401/M501 Fall 2023 A-20

Scanner Parsersource tokens IR

Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby and JavaScript newlines)
• Token objects sometimes carry associated data (e.g., numeric

value, variable name)

UW CSE 401/M501 Fall 2023 A-21

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)

• Given token stream from scanner, the parser
must produce output that captures the meaning
of the program

• Most common parser output is an abstract syntax
tree (AST)
– Essential meaning of program without syntactic noise
– Nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs change over time
– Tradeoffs (and IRs) can also vary between different

phases of a single compiler

UW CSE 401/M501 Fall 2023 A-22

Scanner/Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE 401/M501 Fall 2023 A-23

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
 // this statement does very little

if (x >= y) y = 42;

Static Semantic Analysis

• During or (usually) after parsing, check that the
program is legal and collect info for the back end
– Type checking
– Verify language requirements like proper declarations,

etc.
– Preliminary resource allocation
– Collect other information needed by back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meaning/types/details

UW CSE 401/M501 Fall 2023 A-24

Back End

• Responsibilities
– Translate IR into target code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)

– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE 401/M501 Fall 2023 A-25

Back End Structure

• Typically two major parts
– “Optimization” – code improvement – change correct

code into semantically equivalent “better” code
• Examples: common subexpression elimination, constant

folding, code motion (move invariant computations outside of
loops), function inlining (replace call with body of function)

• Optimization phases often interleaved with analysis
– Target Code Generation (machine specific)

• Instruction selection & scheduling, register allocation
• Usually walk the AST and generate lower-level intermediate

code before optimization

UW CSE 401/M501 Fall 2023 A-26

The Result

• Input
if (x >= y)
 y = 42;

• Output

 movl 16(%rbp),%edx
 movl -8(%rbp),%eax
 cmpl %eax, %edx
 jl L17
 movl $42, -8(%rbp)
L17:

UW CSE 401/M501 Fall 2023 A-27

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Study Compilers? (1)

• Become a better programmer(!)
– Insight into interaction between languages, compilers,

and hardware
– Understanding of implementation techniques, how

code maps to hardware
– Better intuition about what your code does
– Understanding how compilers optimize code helps

you write code that is easier to optimize
• And avoid wasting time doing “optimizations” that the

compiler will do better, and avoid “clever” code that
confuses the compiler and makes thing worse

UW CSE 401/M501 Fall 2023 A-35

Why Study Compilers? (2)

• Compiler techniques are everywhere
– Parsing (“little” languages, program input, scripts,…)
– Software tools (verifiers, checkers, …)
– Database engines, query languages (SQL, …)
– Domain-specific languages, ML, data science
– Text processing

• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools
– Mathematics (Mathematica, Matlab, SAGE)

UW CSE 401/M501 Fall 2023 A-36

Why Study Compilers? (3)

• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with “good enough” approximations /

heuristics

UW CSE 401/M501 Fall 2023 A-37

Why Study Compilers? (4)

• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graphs, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE 401/M501 Fall 2023 A-38

Why Study Compilers? (5)

• You might even write a compiler some day!

• You will write parsers and interpreters for little
languages, if not bigger things
– Command languages, configuration files, XML, JSON,

network protocols, semi-structured data, …

• And if you like working with compilers and are
good at it there are many jobs available…
– Novel languages / architectures for ML, massive data

science, etc. need effective implementations

UW CSE 401/M501 Fall 2023 A-39

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, I’ll barrel on ahead J

UW CSE 401/M501 Fall 2023 A-45

Coming Attractions

• Quick review of formal grammars
• Lexical analysis – scanning & regular

expressions (starting in sections tomorrow!)
– Background for first part of the project

• Followed by parsing …
• Start reading: ch. 1, 2.1-2.4
– Entire 2nd ed. book available through Safari Online

to UW community – see syllabus for link

UW CSE 401/M501 Fall 2023 A-46

Before next time…

• Familiarize yourself with the course web site

• Read syllabus and academic integrity policy

• Find a partner!
– And meet other people in the class too!! J

UW CSE 401/M501 Fall 2023 A-47

