
CSE 401/M501 23au Midterm Exam 11/3/23 Sample Solution

 Page 1 of 8

Question 1. (14 points) Regular expressions and DFAs. Suppose we define this
abbreviation for a regular expression describing a single decimal digit:

 digit = [0-9]

Now consider the following regular expression:

 digit+ (/ 0* [1-9] digit*)?

(In the above regular expression, / is a literal slash character / . The symbols (,), [,], *,
+, -, and ? are regular expression grouping and operator symbols. Note that the entire
regular expression after digit+ is optional, i.e., (…)?)

(a) (6 points) Describe the set of strings generated by this regular expression. For full
credit you should give a description of the strings, not a description of how the regular
expression operators are used to produce them (i.e., don’t describe how the regular
expression works, just what the set contains).

The generated strings are unsigned decimal rational numbers num/denom, where
num is a sequence of one or more decimal digits (including 0), and denom is any
sequence of one or more decimal digits except for the number 0 by itself. The
“/ denom” part is optional.

(b) (8 points) Draw a DFA that accepts the strings generated by this regular expression.

Note: There are many possible solutions to this problem, of course. Other DFAs
that accept the same set of strings also received full credit.

/ [0-9]
[1-9]

[0-9]

[0-9]

0

CSE 401/M501 23au Midterm Exam 11/3/23 Sample Solution

 Page 2 of 8

Question 2. (14 points) Scanners. Continuing our exploration of what a MiniJava
scanner would do with various kinds of input text, we used our MiniJava scanner to read
each of the following four input lines and turn them into tokens. (The lines are numbered
for reference. The numbers before each if are not part of the input read by the scanner.)

1. if (whiletrue) [x <> 0x2] /* $bash */ class[$bash]
2. if (while true) [x < > 0 x2] /* $bash */ class[$bash]
3. if (whiletrue) [x <> 0 x2]class[$bash]
4. if (whiletrue) [x <> 0 x 2] /* $bash */ class[$bash]

The MiniJava scanner produced identical token streams for two of these four input lines.
The output for the other two input lines produced different token streams.

(a) (4 points) Which two input lines produced the same sets of tokens?

 1 and 3

(b) (10 points) Below, list in order the tokens that are returned by a MiniJava scanner for
one of the two input lines that had the same output (i.e., what tokens were returned for the
input lines that matched, but you only should write that sequence once). If there are any
characters in the input line that produced an error, you should write ERROR(#) in the
token stream to show where the illegal character was encountered, using the actual
character instead of # of course. Your scanner output should include all tokens and errors
present – i.e., don’t stop when (or if) the first error is encountered. You may use any
reasonable token names (e.g., LPAREN, ID(x), etc.) as long as your meaning is clear.

A copy of the MiniJava grammar is attached as the last page of the test. You should
remove it from the exam and use it for reference while you answer this question. You
should assume that the scanner processes MiniJava syntax as defined in that grammar,
with no extensions or changes to the language. Also recall that the MiniJava project
defines an <IDENTIFIER> as a sequence of letters, digits, and underscores, starting with
a letter, and uppercase letters are distinguished (different) from lowercase, and an
<INTEGER_LITERAL> is a sequence of decimal digits not starting with 0, or the
number 0 by itself, denoting a decimal integer value.

IF LPAREN ID(whiletrue) RPAREN LBRACK ID(x) LESS ERROR(>)

INTEGER(0) ID(x2) RBRACK CLASS LBRACK ERROR($) ID(bash)

RBRACK

CSE 401/M501 23au Midterm Exam 11/3/23 Sample Solution

 Page 3 of 8

Question 3. (40 points) The “well, I guess we can’t say we weren’t expecting it” parsing
question. Consider the following grammar. The extra E’::=E $ rule needed to handle
end-of-file in an LR parser has been added for you.

0. E’ ::= E $ ($ is EOF)
1. E ::= a B
2. E ::= c

3. B ::= B y E
4. B ::= x

(a) (16 points) Draw the LR(0) state machine for this grammar. When you finish, you
should number the states in the final diagram in whatever order you wish so that you can
use the state numbers in later parts of this question, but you should number the states
starting with 0, 1, 2, 3, ….

(continued on next page)

E’ ::= . E $
E ::= . a B
E ::= . c

1

y

E’::= E . $
0

E

E

a

c

x

B

E ::= c .
2

E ::= a . B
B ::= . B y E
B ::= . x

3

B ::= x .
4

E ::= a B .
B ::= B . y E

5

B ::= B y . E
E ::= . a B
E ::= . c

6

B ::= B y E .
7c

a

 CSE 401/M501 23au Midterm Exam 11/3/23

 Page 4 of 8

Question 3. (cont.) Grammar repeated from previous page for reference:

0. E’ ::= E $ ($ is EOF)
1. E ::= a B
2. E ::= c

3. B ::= B y E
4. B ::= x

(b) (12 points) Write the LR(0) parser table for the LR parser DFA shown in your answer
to part (a). To save time, an empty table is provided below. However, it probably has
more rows than you need. Use only as many rows as needed and leave the rest blank.

State # a c x y $ E B

0 acc

1 s3 s2 g0

2 r2 r2 r2 r2 r2

3 s4 g5

4 r4 r4 r4 r4 r4

5 r1 r1 r1 r1, s6 r1

6 s3 s2 g7

7 r3 r3 r3 r3 r3

8

9

10

11

12

13

14

15

(continued on next page)

 CSE 401/M501 23au Midterm Exam 11/3/23

 Page 5 of 8

Question 3. (cont.) Grammar repeated from previous page for reference:

0. E’ ::= E $ ($ is EOF)
1. E ::= a B
2. E ::= c

3. B ::= B y E
4. B ::= x

(c) (3 points) Is this grammar LR(0)? Explain why or why not. Your answer should
describe all of the problems that exist if the grammar is not LR(0) by identifying the
relevant state number(s) in your answers to parts (a) and (b) and the specific issues in
those state(s) (i.e., something like “state 47 has a shift-reduce conflict if the next input is
foo”, but with, of course, state numbers and correct details from your parser). If the
grammar is LR(0), you should explain why (this can be brief).

No. There is a shift-reduce conflict in state 5 on input y.

(d) (6 points) Complete the following table showing the FIRST and FOLLOW sets and
nullable for each of the non-terminals in this grammar. You should include $ (the end-of-
file marker) in the FOLLOW set for any non-terminal where it is appropriate.

 FIRST FOLLOW nullable

E a, c y, $ no

B x y, $ no

(e) (3 points) Is this grammar SLR? Explain why or why not.

No. Since y is in FOLLOW(E), we cannot eliminate the shift-reduce conflict in
state 5. A reduce is still appropriate in that state because of the follow set
information.

 CSE 401/M501 23au Midterm Exam 11/3/23

 Page 6 of 8

Question 4. (14 points) Top-down parsing. Take another look at the grammar from the
previous problem, but omitting the E’ ::= E $ rule that was added for LR parsing:

1. E ::= a B
2. E ::= c

3. B ::= B y E
4. B ::= x

Is this grammar suitable for constructing a top-down LL(1) predictive parser? If so,
explain why. If not, explain why not, and, if possible, construct a different grammar for
the same language that is suitable for a top-down LL(1) predictive parser, or explain why
this can’t be done.

No. Rule 3 has a direct left recursion on the non-terminal B.

We should be able fix this with the standard algorithm for handling direct left
recursions. Replace rules 3 and 4 from the original grammar with the following two
rules:

 B ::= x bTail
 bTail ::= y E bTail | ε

Unfortunately, this grammar turned out to be trickier than we had expected.
Because bTail is nullable and y is in its follow set, the grammar rules for bTail do
not satisfy the LL(1) condition. There is no easy set of grammar transformations to
fix the problem, although it’s not too hard to come up with a suitable, but
completely different, LL(1) grammar that generates the language.

In the end, when grading the question, we gave full credit to answers that
recognized the problem with the original grammar rule 3 and explained how the
standard direct left recursion rule would be the correct approach to try to solve the
problem.

 CSE 401/M501 23au Midterm Exam 11/3/23

 Page 7 of 8

Question 5. (16 points) Semantics. One of our big customers would like to add a ?:
operator to MiniJava, just like the one in C and C++. The meaning of the expression
e1 ? e2 : e3, is that expression e1 is evaluated first. If e1 evaluates to true, the e2 is
evaluated and that is the value of the entire ?: expression. If e1 is false, then e3 is
evaluated, and that is the value of the expression. For example, this assignment statement
will store the smaller of two values x and y in variable min:

 min = x < y ? x : y ;

(a) (8 points) At the bottom of this page, draw an abstract syntax tree (AST) for this
assignment statement. You should use appropriate names for the AST nodes, and have
an appropriate level of abstraction and structural detail similar to the AST nodes in the
MiniJava project AST classes, but don’t worry about matching the exact names or details
of classes or nodes found in the MiniJava code.

(b) (8 points) Annotate your AST by writing next to the appropriate nodes the checks or
tests that should be done in the static semantics/type-checking phase of the compiler to
ensure that this statement does not contain errors. If a particular check or test applies to
multiple nodes, you can write it once and indicate which nodes it applies to, as long as
your meaning is clear and readable. You may assume that int is the only numeric type
in MiniJava, but remember that MiniJava also has 7oolean and object (class) types.

Notes: Because the only MiniJava type that can be used with the < operator is int,
we gave full credit for answers that restricted the identifier types to int. The above
type-checking rules for ?: are more general and handle situations where other
types are possible.

Because Java requires all language constructs to have types that can be known at
compile time, the ?: operator requires that the two expressions e2 and e3 have the
same type, and that type is the result type of ?:.

=

ID:min ?:

ID:yID:x

ID:y
check: operands (x, y) have types
that can be compared by < .
Result type of < node is boolean

?: types: e2 (x) and e3 (y) must
have the same type, and that type
is the type of the ?: operator node

check: left operand is a storable
location (lvalue) and type of left
operand is assignment compatible
with type of right operand

< ID:x

All identifiers nodes (x, y, min): check
visible in current scope and type of

variable is type declared in that scope

check: type of e1 (first
operand) is boolean

 CSE 401/M501 23au Midterm Exam 11/3/23

 Page 8 of 8

Question 6. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

All answers received full credit

(b) (1 points) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

