
 CSE 401/M501 22au Midterm Exam 11/4/22 Sample Solution

 Page 1 of 6

Question 1. (20 points) Regular expressions and DFAs.

(a) (10 points) Give a regular expression that generates all strings with any combination
of a’s, b’s, and c’s such that the strings contain at least one a and at least one b. Except
for this restriction, the letters in the string may appear in any order – in particular the
required b may appear before or after the required a.

Fine print: You must restrict yourself to the basic regular expression operations covered in class and
on homework assignments: rs , r|s , r* , r+ , r?, character classes like [a-cxy] and [^aeiou],
abbreviations name=regexp, and parenthesized regular expressions. No additional operations that
might be found in the “regexp” packages in various Unix programs, scanner generators like JFlex, or
programming language libraries are allowed.

Any answer that generates the set of strings described in the problem is acceptable.
Here is one:

 [abc]*((a[ac]*b)|(b[bc]*a))[abc]*

(b) (10 points) Draw a DFA that accepts all valid strings of a’s, b’s, and c’s that contain
at least one a and at least one b (i.e., the set described above and generated by the regular
expression from part (a)).

c a,b,c

a,c

b,c

a

b

b

a

 CSE 401/M501 22au Midterm Exam 11/4/22 Sample Solution

 Page 2 of 6

Question 2. (16 points) Ambiguity. Here is a small grammar for somewhat silly English
sentences.

 S ::= see the D T A | see the D A
 D ::= orange | happy
 T ::= duck | crab
 A ::= walk | T walk

Is this grammar ambiguous? If so, give a proof that it is by showing two distinct parse
trees or two different leftmost (or two different rightmost) derivations for some string
generated by the grammar. If not, give an informal, but precise, argument why it is not
ambiguous.

Notes: whitespace in the grammar is only for readability and is not part of the grammar or
the strings generated by it. Each of the words like see or happy in a grammar
production should be treated as a single terminal symbol, not as individual letters.

The grammar is ambiguous. Here are two distinct leftmost derivations of “see the
orange duck walk”

S => see the D T A => see the orange T A => see the orange duck A
 => see the orange duck walk

S => see the D A => see the orange A => see the orange T walk
 => see the orange duck walk

It also would be possible to show the ambiguity by showing the two distinct parse
trees for this, or any other ambiguous, sentence.

 CSE 401/M501 22au Midterm Exam 11/4/22 Sample Solution

 Page 3 of 6

Question 3. (30 points) The “they still can’t think of anything original!!” LR parsing
question. Here is a simple grammar for a language with a print and if statement and
the terminal symbol x. The extra S' ::= S $ rule needed to handle end-of-file in an LR
parser has been added for you. As is usual, whitespace in the grammar is only for
readability and is not part of the grammar or the strings generated by it. Terminal
symbols like print or if are single symbols, not strings of letters.

0. S' ::= S $ ($ is end-of-file)
1. S ::= print E

2. S ::= if E S
3. E ::= x

(a) (16 points) Draw the LR(0) state machine for this grammar. When you finish, you
should number the states in the final diagram in whatever order you wish so you can use
the state numbers in later parts of this question.

S’::= . S $
S ::= . print E
S ::= . if E S

1

if

S’::= S . $

S ::= if . E S
E ::= . x

S ::= if E . S
S ::= . print E
S ::= . if E S

S ::= print . E
E ::= . x

S ::= print E .

E ::= x .

x

E

print

E

S

0

2

3

4 6

5

x

if

S ::= if E S .

S print
7

 CSE 401/M501 22au Midterm Exam 11/4/22 Sample Solution

 Page 4 of 6

Question 3. (cont.) Grammar repeated from previous page for reference if needed:

0. S' ::= S $ ($ is end-of-file)
1. S ::= print E

2. S ::= if E S
3. E ::= x

(b) (10 points) Write the LR(0) parser tables for the LR parser in your answer to part (a).

 x print if $ E S

0 acc

1 s2 s4 g0

2 s5 g3

3 r1 r1 r1 r1

4 s5 g6

5 r3 r3 r3 r3

6 s2 s4 g7

7 r2 r2 r2 r2

(c) (4 points) Is this grammar LR(0)? Explain why or why not. Your answer should
describe all of the problems that exist if the grammar is not LR(0) by identifying the
relevant state number(s) in your answers to parts (a) and (b) and the specific issues in
those state(s) (i.e., something like “state 47 has a shift-reduce conflict if the next input is
foo”, but with, of course, state numbers and correct details from your parser). If the
grammar is LR(0) you should explain why (this can be brief).

Yes, it is LR(0). There are no shift/reduce or reduce/reduce conflicts in any states of
the LR(0) state machine or parser table.

 CSE 401/M501 22au Midterm Exam 11/4/22 Sample Solution

 Page 5 of 6

Question 4. (16 points) LL parsing. Here is a small grammar that generates strings of
the letters a, m, n, and o. As usual, whitespace in the grammar rules is only for
readability and not part of the generated strings.

1. R ::= aTCo | o
2. T ::= m | ε
3. C ::= n | ε

(a) (8 points) Complete the following table showing the FIRST and FOLLOW sets and
nullable for each of the non-terminals in this grammar:

 FIRST FOLLOW nullable

R a, o no

T m n, o yes

C n o yes

Note: since $ (an end-of-file marker) is not included in the grammar, it really is not
part of the set FOLLOW(R), but if it was included as part of that set in an answer
there was no deduction.

(b) (8 points) Is this grammar, as written, suitable for constructing a top-down LL(1)
predictive parser? If it is, your answer should give a technical explanation why it is. If
not, your answer should give a technical explanation describing the problem or problems
with this particular grammar that prevent it from being suitable for a LL(1) predictive
parser.

Yes. For R, both productions start with different terminal symbols so we can always
pick the right right-hand-side when expanding R. For T and C, their FIRST sets do
not contain any symbols in their FOLLOW sets, so we can always choose between
the production that expands the T or C to a terminal symbol or the epsilon
production that erases the T or C from the derived string.

 CSE 401/M501 22au Midterm Exam 11/4/22 Sample Solution

 Page 6 of 6

Question 5. (18 points) Semantics. Suppose we have the following assignment statement
in a MiniJava program:

 p = 2*x.f(a[i]);

(a) (8 points) Draw an abstract syntax tree (AST) for this statement at the bottom of this
page. You should use appropriate names for AST nodes and have an appropriate level of
abstraction and structural detail similar to the AST nodes in the MiniJava project AST
classes, but don’t worry about matching the exact names or details of classes or nodes
found in the MiniJava code.

(b) (10 points) Annotate your AST by writing next to the appropriate nodes the checks or
tests that should be done in the static semantics/type-checking phase of the compiler to
ensure that this assignment statement does not contain errors. If a particular check or test
applies to multiple nodes, you can write it once and indicate which nodes it applies to, as
long as your meaning is clear and readable. You may assume that int is the only
numeric type in the language, but remember that MiniJava also contains boolean and
object (class) types.

Here are the semantics checks we should make:

• All variables are declared and visible in the current scope
• Assignment (=): verify p (left operand) designates an assignable location;

verify the type of the expression (*) is assignment-compatible with type of p
• Multiplication (*): verify types of operands are int; type of * is int
• Call: verify the type of the expression x has a one-argument function f whose

parameter type is assignment-compatible with the type of the subscript ([])
expression (int here). The result type of the call node is the declared result
type of f

• Subscript operator ([]): verify left operand has type array of int (the only
possible array type in MiniJava). Verify the type of the right subscript
operand is int. The type of the subscript [] node is int

Note: there are other possible representations for the AST. Answers that differed
from the above solution received full credit if the AST choices were reasonable and
at the right level of detail.

=

ID:p *

callINT:2

ID:fID:x

ID:iID:a

[]

